Cho tam giác ABC vuông tại A. Điểm M là trung điểm của cạnh BC.Chứng minh AM=\(\frac{1}{2}\)BC
Cho tam giác ABC vuông góc tại A,M là trung điểm cạnh BC.Chứng minh rằng AM = 1/2 BC
Xét ΔABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC
nên \(AM=\dfrac{BC}{2}\)
Cho tam giác ABC vuông tại A.Gọi M là trung điểm của BC.Chứng minh AM=1/2 BC(vẽ hình)
Cho tam giác ABC,gọi M là trung điểm của BC,biết AM là trung điểm của BC,biết AM=1/2 BC.Chứng minh tam giác ABC là tam giác vuông (có vẽ hình)
ta có: AM = 1/2 BC => AM = BM, CM
xét tam giác ABM có : AM = BM
=> ABM cân tại M
xét tam giác ACM có : AM = CM
=> ACM cân tại M
Mà góc AMB + AMC = 180 độ ( kề bù )
=> góc B + góc BAM + góc C + góc CAM = 180 độ
Mà góc B = góc BAM
góc C = góc CAM
=> BAM + CAM = 90 độ
=> tam giác ABC cân tại A
Cho tam giác ABC vuông tại A.Gọi M là trung điểm cạnh BC.Chứng minh rằng:AM=\(\frac{1}{2}\cdot BC\)
cho tam giác ABC , M là trung điểm của BC và AM=1/2 BC.chứng minh: tam giác ABC vuông
Có M là trung điểm BC và AM = 1/2 BC (đề bài)
=> AM là đường trung tuyến ứng với cạnh huyền
Mà cái này chỉ có trong tam giác vuông
=> ABC là tam giác vuông tại A
Vì M là trung điểm của BC=>AM là đường trung tuyến (1)
Mà AM =1/2BC(2)
Từ (1) và (2) =>tam giác ABC vuông tại A (ĐPCM)
Có M là trung điểm của BC và AM = 1/2 DC
- AM là đường trung tuyến ứng với cạnh huyền
Mà cái này chỉ có trong tam giác vuông
- ABC là tam gics vuông tại A
Cho tam giác ABC,gọi M là trung điểm của BC.Chứng minh rằng nếu AM=1/2BC thì tam giác ABC vuông tại A
Cho tam giác ABC vuông tại A, M là trung điểm cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho M là trung điểm của AD.
a) Chứng minh tam giác AMB= tam giác DMC
b) Chứng minh DC vuông góc với AC
c) Chứng minh AM= \(\frac{1}{2}\) BC
Ta có hình vẽ sau:
GT: ΔABC ; \(\widehat{A}\) = 90o
MB = MC ; MA = MD
KL: a) ΔAMB = DMC
a) Xét ΔAMB và ΔDMC có:
MA = MD (gt)
\(\widehat{M_1}\) = \(\widehat{M_2}\) ( 2 góc đối đỉnh)
MB = MC (gt)
\(\Rightarrow\) ΔAMB = ΔDMC ( cạnh - góc-cạnh)
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.
Chứng minh rằng:
a) ∆AMB = ∆AMC.
b) AM là tia phân giác của góc BAC.
c) AM ⊥ BC.
d) Vẽ At là tia phân giác của góc ngoài ở đỉnh A của Δ ABC. Chứng minh: At//BC.
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D.
a) Chứng minh ∆ABD = ∆EBD.
b) Tính số đo góc BED.
c) Chứng minh BD ⊥ AE.
Giúp mình với, mình đag cần gấp :(
Hình tự vẽ nhé !
Giải
a) Xét tam giác AMB và tam giác AMC có
AB = AC ( gt )
MB = MC ( vì M là trung điểm của BC )
AM cạnh chung
Do đó tam giác AMB = tam giác AMC
b) Vì hai tam giác AMB = AMC nên góc BAM = góc CAM
Vì góc BAM = góc CAM nên AM là tia phân giác của góc BAC
c)Vì hai tam giác AMB = AMC nên góc AMB = góc AMC
mà góc AMB + góc AMC = 1800 nên góc AMB = 900
Vì góc AMB =900 nên AM vuông góc với BC
cho tam giác ABC lấy M là trung điểm của cạnh BC
biết AM=1/2 BC chứng minh tam giác ABC vuông tại A
\(AM=\frac{BC}{2}\Rightarrow AM=BM=CM\)
=> tg ABM cân tại M \(\Rightarrow\widehat{ABC}=\widehat{BAM}\)
Và tg ACM cân tại M \(\Rightarrow\widehat{ACB}=\widehat{CAM}\)
\(\Rightarrow\widehat{ABC}+\widehat{ACB}=\widehat{BAM}+\widehat{CAM}=\widehat{BAC}\)
Mà \(\widehat{ABC}+\widehat{ACB}=180^o-\widehat{BAC}=\widehat{BAC}\Rightarrow\widehat{BAC}=90^o\)
=> tg ABC vuông tại A