Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đỗ Huy Hà
Xem chi tiết
Ng KimAnhh
15 tháng 4 2023 lúc 17:36

Ta có:

\(a:b=2\dfrac{3}{3}:\dfrac{9}{10}=3:\dfrac{9}{10}=3\times\dfrac{10}{9}=\dfrac{30}{9}=\dfrac{10}{3}\)

Vậy, tỉ số của a và b là `10/3`

kyan
Xem chi tiết
ngọc ánh 2k8
Xem chi tiết
ngọc ánh 2k8
6 tháng 11 2021 lúc 10:40

giúp mình nhé

Nguyễn Hoàng Minh
6 tháng 11 2021 lúc 10:42

\(a,\Leftrightarrow\left\{{}\begin{matrix}a=b+1\\2b+2+b=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1+1=2\\b=1\end{matrix}\right.\\ b,\Leftrightarrow\left\{{}\begin{matrix}2a-4+a=7\\b=4-a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{11}{3}\\b=4-\dfrac{11}{3}=\dfrac{1}{3}\end{matrix}\right.\)

buitung111
Xem chi tiết
Nguyễn Hữu Thế
16 tháng 6 2015 lúc 6:25

em chỉ biết từng này thôi

a=6

b=1

help me
Xem chi tiết
Nguyễn Văn Duy
Xem chi tiết

ƯCLN(a,b)=24

=>\(\left\{{}\begin{matrix}a=24x\\b=24y\end{matrix}\right.\)

Ta có: a+b=120

=>24x+24y=120

=>x+y=5

=>\(\left(x,y\right)\in\left\{\left(0;5\right);\left(5;0\right);\left(1;4\right);\left(4;1\right);\left(2;3\right);\left(3;2\right)\right\}\)

=>\(\left(a,b\right)\in\left\{\left(0;120\right);\left(120;0\right);\left(24;96\right);\left(96;24\right);\left(48;72\right);\left(72;48\right)\right\}\)

mà a,b là các số nguyên tố

nên \(\left(a,b\right)\in\varnothing\)

Phương Thùy
Xem chi tiết
Nguyễn Hương Lan
Xem chi tiết
help me
Xem chi tiết
Akai Haruma
9 tháng 1 2023 lúc 19:04

Bài 1:

a. Gọi d là ƯCLN(n+2, n+3). Khi đó:

$n+2\vdots d; n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.

b.

Gọi $d=ƯCLN(2n+1, 9n+4)$

$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$

$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.

Akai Haruma
9 tháng 1 2023 lúc 19:07

Bài 2:

a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.

Khi đó: $a+b=24x+24y=192$

$\Rightarrow 24(x+y)=192$

$\Rightarrow x+y=8$

Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$

$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$

Akai Haruma
9 tháng 1 2023 lúc 19:08

Bài 2:

b. Vì ƯCLN(a,b)=6 nên đặt $a=6x, b=6y$ với $x,y$ là hai số nguyên tố cùng nhau.

Khi đó:

$ab=6x.6y=216$

$\Rightarrow xy=6$. Vì $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,6), (2,3), (3,2), (6,1)$

$\Rightarrow (a,b)=(6,36), (12, 18), (18,12), (36,6)$