\(\frac{1}{4x}=\frac{1}{2y}=\frac{3}{4z}=\frac{1}{t}\) và x+y+z+t-10=0
Tìm x
\(\frac{1}{4x}=\frac{1}{2y}=\frac{3}{4z}=\frac{1}{t}\) và x + y + z + t - 10 = 0
GIÚP MÌNH NHÉ, MÌNH ĐANG CẦN GẤP LẮM!
từ giả thiết =>\(x+y+z+t=10\)
Ta có \(\frac{1}{4x}=\frac{1}{2y}=\frac{3}{4z}=\frac{1}{t}\Rightarrow\frac{1}{4x}=\frac{2}{4y}=\frac{3}{4z}=\frac{4}{4t}=\frac{1+2+3+4}{4x+4y+4z+4t}=\frac{10}{4\left(x+y+z+t\right)}=\frac{10}{40}=\frac{1}{4}\)
đề t k bt là gì nên chỉ bt làm đến đây , còn bbước nào nữa thì bạn tự làm nốt nhé !
^_^
\(\frac{1}{4x}=\frac{1}{2y}=\frac{3}{4z}=\frac{1}{t}\)
\(\frac{1}{4x}=\frac{1}{2y}=\frac{1}{\frac{4}{3}z}=\frac{1}{t}\)
\(\Rightarrow4x=2y=\frac{4}{3}z=t\)
\(\Rightarrow\frac{4x}{4}=\frac{2y}{4}=\frac{4z}{3.4}=\frac{t}{4}\)
hay \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{t}{4}\)
Mà x + y + z + t - 10 = 0
x + y + z + t = 10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{t}{4}=\frac{x+y+z+t}{1+2+3+4}=\frac{10}{10}=1\)
Từ đó suy ra : x = 1 ; y = 2 ; z = 3 ; t = 4
1. Cho \(\frac{4x-5y}{7}=\frac{5z-3x}{9}=\frac{3y-4z}{11}\) và x + y + z = 48. Tìm x;y;z
2. Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{6}\). Chứng minh rằng \(\frac{5x-2y}{2018}=\frac{6y-5z}{2019}=\frac{4z-12y}{2020}\)
1.
Có: \(\frac{4x-5y}{7}=\frac{5z-3x}{9}=\frac{3y-4z}{11}\\ \Leftrightarrow\frac{7}{7}.\left(\frac{4x-5y}{7}\right)=\frac{9}{9}.\left(\frac{5z-3x}{9}\right)=\frac{11}{11}.\left(\frac{3y-4z}{11}\right)\\ \Leftrightarrow\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}=\frac{28x-35y+45z-27x+33y-44z}{49+81+121}\)
tính ra nó đc x+ 2y +z ko đc tròn cho lắm..... mệt r tự nghĩ tiếp đi
1.
Ta có: \(\frac{4x-5y}{7}=\frac{5z-3x}{9}=\frac{3y-4z}{11}.\)
\(\Rightarrow\frac{7.\left(4x-5y\right)}{49}=\frac{9.\left(5z-3x\right)}{81}=\frac{11.\left(3y-4z\right)}{121}\)
\(\Rightarrow\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{28x-35y}{49}=\frac{45z-27x}{81}=\frac{33y-44z}{121}=\frac{28x-35y+45z-27x+33y-44z}{49+81+121}=\frac{\left(28x-27x\right)-\left(35y-33y\right)+\left(45z-44z\right)}{251}=\frac{x-2y+z}{251}.\)
Đoạn này chịu rồi.
Bài 1: Tìm x, y, z biết:
a, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và x+ 2y + 4z = 220
b, \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4z = 50
Bài 1:
a) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}.\)
=> \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{4z}{5}\)
=> \(\frac{x}{\frac{3}{2}}=\frac{2y}{\frac{8}{3}}=\frac{4z}{5}\) và \(x+2y+4z=220.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{\frac{3}{2}}=\frac{2y}{\frac{8}{3}}=\frac{4z}{5}=\frac{x+2y+4z}{\frac{3}{2}+\frac{8}{3}+5}=\frac{220}{\frac{55}{6}}=24.\)
\(\left\{{}\begin{matrix}\frac{x}{\frac{3}{2}}=24\Rightarrow x=24.\frac{3}{2}=36\\\frac{y}{\frac{4}{3}}=24\Rightarrow y=24.\frac{4}{3}=32\\\frac{4z}{5}=24\Rightarrow4z=120\Rightarrow z=30\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(36;32;30\right).\)
Chúc bạn học tốt!
Tìm x,y,z biết :
a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(x^2+2y^2+4z^2=141\)
b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và xyz =24
c)\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
a) Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)
Khi đó : \(\left(3k\right)^2+2.\left(4k\right)^2+4.\left(5k\right)^2=141\)
\(\Leftrightarrow141k^2=141\)
\(\Leftrightarrow k^2=1\)
\(\Leftrightarrow k=\pm1\)
TH1 \(\hept{\begin{cases}x=3\\y=4\\z=5\end{cases}}\)
TH2 \(\hept{\begin{cases}x=-3\\y=-4\\z=-5\end{cases}}\)
Vậy.....
a)
Theo đề bài ta có: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(x^2+2y^2+4z^2=141\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x^2}{3^2}=\frac{2y^2}{2.4^2}=\frac{4z^2}{4.5^2}=\frac{x^2+2y^2+4z^2}{9+32+100}=\frac{141}{141}=1\)
\(\frac{x}{3}=1\Rightarrow x=3.1=3\)
\(\frac{y}{4}=1\Rightarrow y=4.1=4\)
\(\frac{z}{5}=1\Rightarrow z=5.1=5\)
Vậy x = 3
y=4
z=5
b) xem lại đề
c) theo đề bài ta có:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}=\frac{1+7y-1-5y}{4x-5x}=\frac{2y}{-x}=\frac{1+5y-1-3y}{5x-12}\)
\(=\frac{2y}{5x-12}\)
\(\Rightarrow\frac{2y}{-x}=\frac{2y}{5x-12}\left(y=0\right)\) thay vào thì đề bài k thỏa mãn
*Nếu y khác 0
\(\Rightarrow-x=5x-12\)
\(\Rightarrow x=2\)
\(\frac{1+3y}{12}=\frac{2y}{-2}=-y\Rightarrow1+3y=-12y\Rightarrow1=-15y=\frac{-1}{15}\)
Vậy x = 2
y= -1/15
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) . Tìm Min \(\sqrt{\frac{2x^{3}+3y^{2}}{x+4y}}+\sqrt{\frac{2y^{3}+3z^{2}}{y+4z}}+\sqrt{\frac{2z^{3}+3x^{2}}{z+4x}}\)
Cho x,y,z>0 và\(\frac{y-2x+4z}{2x}=\frac{z-2y+4x}{2y}=\frac{x-2z+4y}{2z}\)
Tính P=\(\left(2+\frac{x}{2y}\right)\left(2+\frac{y}{2z}\right)\left(2+\frac{z}{2x}\right)\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{y-2x+4z}{2x}=\frac{z-2y+4x}{2y}=\frac{x-2z+4y}{2z}=\)\(=\frac{\left(y-2x+4z\right)+\left(z-2y+4x\right)+\left(x-2z+4y\right)}{2x+2y+2z}=\frac{3\left(x+y+z\right)}{2\left(x+y+z\right)}=\frac{3}{2}\)
\(\Rightarrow\left\{\begin{matrix}2\left(y-2x+4z\right)=6x\\2\left(z-2y+4x\right)=6y\\2\left(x-2z+4y\right)=6z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y-2x+4z=3x\\z-2y+4x=3y\\x-2z+4y=3z\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}y+4z=5x\\z+4x=5y\\x+4y=5z\end{matrix}\right.\)
\(P=\left(2+\frac{x}{2y}\right)\left(2+\frac{y}{2z}\right)\left(2+\frac{z}{2x}\right)\)
\(P=\frac{4y+x}{2y}.\frac{4z+y}{2z}.\frac{4x+z}{2x}=\frac{5z}{2y}.\frac{5x}{2z}.\frac{5y}{2x}=\frac{125}{8}\)
Tìm x , y , z :
a) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x + 3y - z = 50
b) \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{x-5}{6}\)và 5x - 3y - 4z = 46
c) \(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)và x + y + z = 107
d) \(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\)và 3x - 2y + 5z = 96
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
\(c,\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)và x + y + z = 107
Ta có : \(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\Leftrightarrow\frac{x}{\frac{5}{2}}=\frac{y}{\frac{10}{3}}=\frac{z}{12}=\frac{x+y+z}{\frac{5}{2}+\frac{10}{3}+12}=\frac{107}{\frac{107}{6}}=107\cdot\frac{6}{107}=6\)
Vậy : \(\hept{\begin{cases}\frac{2x}{5}=6\\\frac{3y}{10}=6\\\frac{z}{12}=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=15\\x=20\\z=72\end{cases}}\)
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+7}{5}\) và x+y-z=8
\(\frac{x+1}{3}=\frac{y+2}{-4}=\frac{z-3}{5}\)và 3x+2y+4z=47
Chắc câu hỏi là tìm x, y, z
1) \(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+7}{5}=\frac{\left(x-1\right)+\left(y-2\right)-\left(z+7\right)}{3+4-5}=\frac{x+y-z-10}{2}=\frac{8-10}{2}=-1\)
=> x-1 = 3.(-1) => x = -2
y-2 = 4.(-1) => y = -2
z+7 =5.(-1) => z = -12
2) Làm tương tự, nhưng trước khi cộng tử và mẫu các phân số với nhau thì nhân cả tử và mẫu phân số thứ nhất với 3; phân số thứ hai với 2 và phân số thứ ba với 4 để xuất hiện tổng 3x + 2y +4z.
\(\frac{3\left(x+1\right)}{3.3}=\frac{2\left(y+2\right)}{-4.2}=\frac{4\left(z-3\right)}{5.4}=\frac{3\left(x+1\right)+2\left(y+2\right)+4\left(z-3\right)}{9-8+20}=\frac{47-5}{21}=2\)
=> x + 1 = 3.2 => x = 5
y+ 2 = -4.2 => y = -10
z-3 =5.2 => z = 13
A.\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và x+y+z=49
B.\(\frac{x}{10}=\frac{y}{6}=\frac{z}{4}\) và 5x+y-2z=28
C.\(\frac{1}{2}x=\frac{2y}{3}=\frac{3z}{4}\) và x-y=15
a) Ta có\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
=>\(\frac{2x}{3}.\frac{1}{12}=\frac{3y}{4}.\frac{1}{12}=\frac{4z}{5}.\frac{1}{12}\)
=> \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)(day tỉ số bằng nhau)
=> x = 18 ; y = 16 ; z = 15
b) Ta có : \(\frac{x}{10}=\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)
Đặt \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=k\Rightarrow\hept{\begin{cases}x=5k\\y=3k\\z=2k\end{cases}}\)
Khi đó 5x + y - 2z = 28
<=> 5.5k + 3k - 2.2k = 28
=> 25k + 3k - 4k = 28
=> 24k = 28
=> k = 7/6
=> x = 35/6 ; y = 7/2 ; z = 7/3
c) \(\frac{1}{2}x=\frac{2y}{3}=\frac{3z}{4}\)
=> \(\frac{1}{2}x.\frac{1}{6}=\frac{2y}{3}.\frac{1}{6}=\frac{3z}{4}.\frac{1}{6}\)
=> \(\frac{x}{12}=\frac{y}{9}=\frac{z}{8}=\frac{x-y}{12-9}=\frac{15}{3}=5\)(dãy tỉ số bằng nhau)
=> x = 60 ; y = 45 ; z = 40
A. Theo đề ta có:
- \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
=>\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}\)
- \(x+y+z=49\)
=> \(12x+12y+12=49\cdot12=588\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{12x}{18}=\frac{12y}{16}=\frac{12z}{15}=\frac{12x+12y+12z}{18+16+15}=\frac{588}{49}=12\)
Còn lại bạn tự làm.
B. Theo đề ta có:
- \(\frac{x}{10}=\frac{y}{6}=\frac{z}{4}\)
=> \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{8}=\frac{5x+y-2z}{50+6-8}=\frac{28}{48}\)
Còn lại bạn tự làm.
C. Theo đề ta có:
\(\frac{1}{2}x=\frac{2y}{3}\)=>\(\frac{x}{2}=\frac{2y}{3}\)=>\(\frac{2x}{4}=\frac{2y}{3}\)
\(x-y=15\)=> \(2x-2y=30\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{4}=\frac{2y}{3}=\frac{2x-2y}{4-3}=20\)
Ta suy ra:
\(\frac{2y}{3}=20\) => \(2y=20\cdot3=60\)=> \(y=60:2=30\)=> \(\frac{2y}{3}=\frac{2\cdot30}{3}=20=\frac{3z}{4}\)
=> \(3z=20\cdot4=80\)=> \(z=\frac{80}{3}\)
Còn lại bạn tự làm, phần tính toán của mình có thể sai sót, mong bạn thông cảm và nhớ kiểm tra lại nhé !