Cho a, b là các số dương thỏa mãn a + b + 2ab = 12. Tìm GTNN của biểu thức A = a + b.
Cho a, b là các số dương thỏa mãn a + b + 2ab = 12. Tìm GTNN của biểu thức A = a + b.
\(A=a+b=12-2ab\ge12-2\frac{\left(a+b\right)^2}{4}=12-\frac{A^2}{2}\)
Vậy \(A^2+2A-24\le0\)
\(-6\le A\le4\)
Vậy \(A_{min}=-6\)
Cho các số thực a,b,c dương thỏa mãn a+b+c=5 Tìm GTNN CỦA BIỂU THỨC 2A+2AB+ABC
Biểu thức này không tồn tại cả GTLN lẫn GTNN (chỉ tồn tại nếu a;b;c không âm)
cho a, b, c là các số dương thỏa mãn a+b+c>=6. Tìm gtnn của biểu thức sau: P = 2a+4b+6c+4/a+12/b+20/c
\(P=\left(a+b+c\right)+\left(a+\frac{4}{a}\right)+\left(3b+\frac{12}{b}\right)+\left(5c+\frac{20}{c}\right)\)
Theo BĐT AM-GM và gt ta có: \(P\ge6+4+12+20=42\).
Đẳng thức xảy ra khi \(a=b=c=2\)
Vậy \(minP=42\)
Cho a,b là các số thực dương thỏa mãn
a^2+2ab+2b^2-2b=8
a)Chứng minh rằng :0<a+b<=3 (<= là bé hơn hoặc bằng)
b)tìm GTNN của biểu thức P=a+b+8/a+2/b
cho a,b là các số thực dương thỏa mãn a+b =<1.Tìm gtnn của A=1/(a^2+b^2)+1/2ab
Ta có : (a-b)^2 >= 0 với mọi a,b
<=> a^2-2ab+b^2 >= 0
<=> a^2+b^2 >= 2ab
<=> a^2+2ab+b^2 >= 4ab
<=> (a+b)^2 >= 4ab
Với a,b > 0 thì ta chia 2 vế cho ab .(+b) được :
a+b/ab >= 4/a+b
<=>1/a + 1/b >=4ab
Áp dụng bđt trên thì A >= 4/(a^2+b^2+2ab) = 4/(a+b)^2 >= 4/1^2 = 4
Dấu "=" xảy ra <=> a=b ; a+b =1 <=> a=b=1/2
Vậy Min A = 4 <=> x = y= 1/2
`a+ble1<=>(a+b)^2le1`
Áp dụng bđt `1/(a)+1/bge4/(a+b)` ta có:
`Age4/(a^2+2ab+b^2)=4/(a+b)^2=4/1=4`
Dấu `=` xảy ra khi:`a^2+b^2=2ab<=>(a-b)^2=0<=>a=b` và `a+b=1`
`<=>a=b=1/2`
Vậy GTNN của `A=4` khi và chỉ khi `a=b=1/2`
Cho a,b là các số dương thỏa mãn a+b+2ab=12
tính GTNN của A=\(\frac{a^2+ab}{a+2b}+\frac{b^2+ab}{2a+b}\)
Ta có: \(12=a+b+2ab\ge2ab+2\sqrt{ab}\Rightarrow0< ab\le4\)
Chú ý: \(2ab=12-a-b\) . Do đó:
\(A=\frac{2a^2+2ab}{2a+4b}+\frac{2b^2+2ab}{4a+2b}\)
\(=\frac{2\left(a^2+4\right)+4-a-b}{2a+4b}+\frac{2\left(b^2+4\right)+4-a-b}{4a+2b}\)
\(\ge\frac{7a-b+4}{2a+4b}+\frac{7b-a+4}{4a+2b}=\frac{7\left(a-b\right)^2+108\left(4-ab\right)}{6\left(2a+b\right)\left(a+2b\right)}+\frac{8}{3}\ge\frac{8}{3}\)
P/s: Em chưa check lại đâu, anh tự check đi:D Và chú ý cái dấu "=" cuối cùng của em chỉ đúng khi a + b +2ab = 12.
Cách khác:
Dễ thấy \(0< ab\le4\) (như bài trên)
\(A-\frac{8}{3}=\frac{2\left(a-2\right)^2}{2a+4b}+\frac{2\left(b-2\right)^2}{4a+2b}+\frac{7\left(a-b\right)^2+108\left(4-ab\right)}{6\left(2a+b\right)\left(a+2b\right)}\ge0\)
P/s: Nếu bài trên đúng thì bài này đúng, bài trên sai thì bài này sai, vì bài này được suy ra từ bài trên:v
Bài tập sử dụng BĐT Cauchy
B1: Cho số thực \(a\ge6\). Tìm GTNN của biểu thức
\(A=a^2+\frac{18}{a}\)
B2: Cho các thực dương a,b thỏa mãn \(a+b\le1\) . Tìm GTNN của biểu thức
\(A=\frac{1}{1+a^2+b^2}+\frac{1}{2ab}\)
B3: Cho a,b là các số thực dương tùy ý. Tính GTNN của biểu thức
\(A=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)
B1
Ta có
\(A=\frac{a^2}{24}+\frac{9}{a}+\frac{9}{a}+\frac{23a^2}{24}\ge3\sqrt[3]{\frac{a^2}{24}.\frac{9}{a}.\frac{9}{a}+\frac{23a^2}{24}}\ge\frac{9}{2}+\frac{23.36}{24}\ge39\)
Dấu "=" xảy ra <=> a=6
Vậy Min A = 39 <=> a=6
\(A=a^2+\frac{18}{a}=a^2+\frac{216}{a}+\frac{216}{a}-\frac{414}{a}\ge3\sqrt[3]{a^2.\frac{216}{a}.\frac{216}{a}}-69=39\)
Đẳng thức xảy ra khi a = 6
B3: Áp dụng bđt AM-GM
\(A=\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}+\frac{3\left(a+b\right)}{4\sqrt{ab}}\ge2\sqrt{\frac{a+b}{4\sqrt{ab}}.\frac{\sqrt{ab}}{a+b}}+\frac{3\left(a+b\right)}{4\left(\frac{a+b}{2}\right)}\)
\(=1+\frac{3\left(a+b\right)}{2\left(a+b\right)}=1+\frac{3}{2}=\frac{5}{2}\)
Dấu "=" xảy ra khi \(a=b>0\)
Cho a,b là 2 số dương thỏa mãn \(a\ge2b\). Tìm GTNN của biểu thức \(A=\dfrac{a^2+b^2}{ab}\)
\(a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)
\(A=\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a}{4b}+\dfrac{b}{a}+\dfrac{3}{4}.\dfrac{a}{b}\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)
\(A_{min}=\dfrac{5}{2}\) khi \(a=2b\)
Cho các số thực dương a, b, c thỏa mãn a ≥ b + c. Tìm GTNN của biểu thức:
P = \(\dfrac{a}{b+c}+\dfrac{b}{a+2c}+\dfrac{c}{a+2b}\)