Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Trần Đức Huy
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
28 tháng 5 2021 lúc 21:19

\(A=a+b=12-2ab\ge12-2\frac{\left(a+b\right)^2}{4}=12-\frac{A^2}{2}\)

Vậy \(A^2+2A-24\le0\)

\(-6\le A\le4\)

Vậy \(A_{min}=-6\)

Khách vãng lai đã xóa
Võ Triệu
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 9 2021 lúc 14:04

Biểu thức này không tồn tại cả GTLN lẫn GTNN (chỉ tồn tại nếu a;b;c không âm)

Nguyễn Thị Dung
Xem chi tiết
Trần Quốc Đạt
13 tháng 1 2017 lúc 20:09

\(P=\left(a+b+c\right)+\left(a+\frac{4}{a}\right)+\left(3b+\frac{12}{b}\right)+\left(5c+\frac{20}{c}\right)\)

Theo BĐT AM-GM và gt ta có: \(P\ge6+4+12+20=42\).

Đẳng thức xảy ra khi \(a=b=c=2\)

Vậy \(minP=42\)

Trọng Messi
Xem chi tiết
Đàm Mạnh Dũng
Xem chi tiết
Nguyễn Anh Quân
7 tháng 11 2017 lúc 19:50

Ta có : (a-b)^2 >= 0 với mọi a,b

<=> a^2-2ab+b^2 >= 0

<=> a^2+b^2 >= 2ab

<=> a^2+2ab+b^2 >= 4ab

<=> (a+b)^2 >= 4ab

Với a,b > 0 thì ta chia 2 vế cho ab .(+b) được :

a+b/ab >= 4/a+b

<=>1/a + 1/b >=4ab

Áp dụng bđt trên thì A >= 4/(a^2+b^2+2ab) = 4/(a+b)^2 >= 4/1^2 = 4

Dấu "=" xảy ra <=> a=b ; a+b =1  <=> a=b=1/2

Vậy Min A = 4 <=> x = y= 1/2

Đinh Anh Tài
19 tháng 4 2022 lúc 20:04

`a+ble1<=>(a+b)^2le1`

Áp dụng bđt `1/(a)+1/bge4/(a+b)` ta có:

`Age4/(a^2+2ab+b^2)=4/(a+b)^2=4/1=4`

Dấu `=` xảy ra khi:`a^2+b^2=2ab<=>(a-b)^2=0<=>a=b` và `a+b=1`

`<=>a=b=1/2`

Vậy GTNN của `A=4` khi và chỉ khi `a=b=1/2` 

Le Dinh Quan
Xem chi tiết
tth_new
18 tháng 2 2020 lúc 7:24

Ta có: \(12=a+b+2ab\ge2ab+2\sqrt{ab}\Rightarrow0< ab\le4\)

Chú ý: \(2ab=12-a-b\) . Do đó:

\(A=\frac{2a^2+2ab}{2a+4b}+\frac{2b^2+2ab}{4a+2b}\)

\(=\frac{2\left(a^2+4\right)+4-a-b}{2a+4b}+\frac{2\left(b^2+4\right)+4-a-b}{4a+2b}\)

\(\ge\frac{7a-b+4}{2a+4b}+\frac{7b-a+4}{4a+2b}=\frac{7\left(a-b\right)^2+108\left(4-ab\right)}{6\left(2a+b\right)\left(a+2b\right)}+\frac{8}{3}\ge\frac{8}{3}\)

P/s: Em chưa check lại đâu, anh tự check đi:D Và chú ý cái dấu "=" cuối cùng của em chỉ đúng khi a + b +2ab = 12.

Khách vãng lai đã xóa
tth_new
18 tháng 2 2020 lúc 7:29

Cách khác:

Dễ thấy \(0< ab\le4\) (như bài trên)

\(A-\frac{8}{3}=\frac{2\left(a-2\right)^2}{2a+4b}+\frac{2\left(b-2\right)^2}{4a+2b}+\frac{7\left(a-b\right)^2+108\left(4-ab\right)}{6\left(2a+b\right)\left(a+2b\right)}\ge0\)

P/s: Nếu bài trên đúng thì bài này đúng, bài trên sai thì bài này sai, vì bài này được suy ra từ bài trên:v

Khách vãng lai đã xóa
Xem chi tiết
๓เภђ ภوยץễภ ђảเ
4 tháng 10 2020 lúc 19:52

B1 

Ta có

\(A=\frac{a^2}{24}+\frac{9}{a}+\frac{9}{a}+\frac{23a^2}{24}\ge3\sqrt[3]{\frac{a^2}{24}.\frac{9}{a}.\frac{9}{a}+\frac{23a^2}{24}}\ge\frac{9}{2}+\frac{23.36}{24}\ge39\)

Dấu "=" xảy ra <=> a=6

Vậy Min A = 39 <=> a=6

Khách vãng lai đã xóa
Kiệt Nguyễn
4 tháng 10 2020 lúc 19:57

 \(A=a^2+\frac{18}{a}=a^2+\frac{216}{a}+\frac{216}{a}-\frac{414}{a}\ge3\sqrt[3]{a^2.\frac{216}{a}.\frac{216}{a}}-69=39\)

Đẳng thức xảy ra khi a = 6

Khách vãng lai đã xóa
KCLH Kedokatoji
4 tháng 10 2020 lúc 19:59

B3: Áp dụng bđt AM-GM

\(A=\frac{a+b}{4\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}+\frac{3\left(a+b\right)}{4\sqrt{ab}}\ge2\sqrt{\frac{a+b}{4\sqrt{ab}}.\frac{\sqrt{ab}}{a+b}}+\frac{3\left(a+b\right)}{4\left(\frac{a+b}{2}\right)}\)

\(=1+\frac{3\left(a+b\right)}{2\left(a+b\right)}=1+\frac{3}{2}=\frac{5}{2}\)

Dấu "=" xảy ra khi \(a=b>0\)

Khách vãng lai đã xóa
Ngưu Kim
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 9 2021 lúc 21:08

\(a\ge2b\Rightarrow\dfrac{a}{b}\ge2\)

\(A=\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a}{4b}+\dfrac{b}{a}+\dfrac{3}{4}.\dfrac{a}{b}\ge2\sqrt{\dfrac{ab}{4ab}}+\dfrac{3}{4}.2=\dfrac{5}{2}\)

\(A_{min}=\dfrac{5}{2}\) khi \(a=2b\)

Nguyễn Ngọc Anh
Xem chi tiết