333111 và 222333
34-90=............
67-298893=
222333-888999=
883893=2..................
34 - 90 = -56
67 - 298893 = -298826
222333-888999=-666666
883893 + 2 = 8838935
34-90=-56
67-298893=-298826
222333-888999=-666666
Viết các số sau dưới dạng tích của 2 số tự nhiên liên tiếp
a aaabbb
b 222333
Viết các số sau dưới dạng tích 2 số tự nhiên liên tiếp:
a) aaabbb
b) 222333
Mình đang cần gấp giúp mình nhé. Mình cảm ơn nhiều!
5 bạn trả lời đúng đầu tiên sẽ được mình tích đúng
1) Tìm số tự nhiên n để phân số 3 4 6 99 + + n n a) Có giá trị là số tự nhiên. b) Là phân số tối giản. 2) (1978 1979 1980 21 1958 1980 1979 1978 1979 . . : . . + + − ) ( ) 3) Tìm số tự nhiên có 3 chữ số abc , biết rằng: b = ac 2 và abc − cba = 495 . 4) Tìm các số tự nhiên x, y. sao cho (2x+1)(y-5)=12 5) Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1 6) Chứng tỏ rằng 30 2 12 1 + + n n là phân số tối giản. 7) Tìm x a) 5x = 125; b) 32x = 81 ; c) 52x-3 – 2.52 = 52 .3 8) Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đó là số dương. 9) Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10. 10) Tính A = 4 + 2 2 + 2 3 + 2 4 +. . . + 2 20 11) Tìm x biết: ( x + 1) + ( x + 2) + . . . + ( x + 100) = 5750. 12) Chứng minh nếu: (ab + cd + eg )⋮ 11 thì abc deg ⋮ 11. 13) Chứng minh 10 28 + 8 ⋮ 72. 14) Hai lớp 6A;6B cùng thu nhặt một số giấy vụn bằng nhau. Lớp 6A có 1 bạn thu được 26 Kg còn lại mỗi bạn thu được 11 Kg ; Lớp 6B có 1 bạn thu được 25 Kg còn lại mỗi bạn thu được 10 Kg . Tính số học sinh mỗi lớp biết rằng số giấy mỗi lớp thu được trong khoảng 200Kg đến 300 Kg. 15) So sánh: 222333 và 333222 16) Tìm các chữ số x và y để số 1x8y2 chia hết cho 36 17) Tìm số tự nhiên a biết 1960 và 2002 chia cho a có cùng số dư là 28 18) Cho : S = 30 + 32 + 34 + 36 + ... + 32002 a) Tính S b) Chứng minh S ⋮ 7 19) Tìm số tự nhiên nhỏ nhất, biết rằng khi chia số này cho 29 dư 5 và chia cho 31 dư 28 20) Tìm chữ số tận cùng của các số sau: a) 571999 b) 931999 21) Cho A= 9999931999 - 5555571997. Chứng minh rằng A chia hết cho 5. 22) Cho phân số b a (0 < a < b) cùng thêm m đơn vị (m > 0) vào tử và mẫu thì phân số mới lớn hơn hay bé hơn b a 23) Cho số 155*710* 4*16 có 12 chữ số . chứng minh rằng nếu thay các dấu * bởi các chữ số khác nhau trong ba chữ số 1,2,3 một cách tuỳ thì số đó luôn chia hết cho 396. 24) Chứng tỏ rằng: 2x + 3y chia hết cho 17 ⇔ 9x + 5y chia hết cho 17 25) Một số tự nhiên chia cho 120 dư 58, chia cho 135 dư 88. Tìm a, biết a bé nhất 26) Người ta viết các số tự nhiên liên tiếp bắt đầu từ 1 đến 2006 liền nhau thành một số tự nhiên L . Hỏi số tự nhiên L có bao nhiêu chữ số 27) Có bao nhiêu chữ số gồm 3 chữ số trong đó có chữ số 4 28) Cho các số 0; 1; 3; 5; 7; 9. Hỏi có thể thiết lập được bao nhiêu số có 4 chữ số chia hết cho 5 từ sáu chữ số đã cho.
Ai làm nhanh mik tick
Tìm ƯCLN của
a. 12 và 18
b. 12 và 10
c. 24 và 48
d.300 và 280
e. 9 và 81
f. 11 và 15
g.1 và 10
h.150 và 84
i.46 và 138
j.32 và 192
k.18 và 42
l.28 và 48
m.24;36 và 60
n.12;15 và 10
p.16;32 và 112
q.14;82 và 124
r.25;55 và 75
s.150;84 và 30
t.24 ; 36 và 160
o.24;16 và 8
a) ƯCLN(12;18) = 6
b) ƯCLN(12;10)=2
c) ƯCLN(24;48)=24
d) ƯCLN(300;280)=20
e) ƯCLN(9;81)=9
f) ƯCLN(11;15)=1
g) ƯCLN(1;10)=1
h) ƯCLN(150;84)=6
i) ƯCLN(46;138)=46
j) ƯCLN(32;192)=32
k) ƯCLN(18;42)=6
l) ƯCLN(28;48)=4
m) ƯCLN(24;36;60) = 12
n) ƯCLN(12;15;10)=1
p) ƯCLN(16;32;112) = 16
q) ƯCLN(14;82;124) = 2
r) ƯCLN(25;55;75) = 5
Tìm BCNN -) BC a, 42 và 70 b, 70 và 180 c, 5 và 7 và 8 d, 12 và 18 e, 15 và 18 f, 84 và 108 j,33 và 44 và 55 g, 1 và 12 và 27 n, 5 và 9 và 11
a: \(42=2\cdot3\cdot7;70=2\cdot5\cdot7\)
=>\(BCNN\left(42;70\right)=2\cdot3\cdot5\cdot7=210\)
=>\(BC\left(42;70\right)=B\left(210\right)=\left\{0;210;420;...\right\}\)
b: \(70=2\cdot5\cdot7;180=3^2\cdot5\cdot2^2\)
=>\(BCNN\left(70;180\right)=2^2\cdot3^2\cdot5\cdot7=1260\)
=>\(BC\left(70;180\right)=\left\{1260;2520;...\right\}\)
c: \(5=5;7=7;8=2^3\)
=>\(BCNN\left(5;7;8\right)=5\cdot7\cdot8=280\)
=>\(BC\left(5;7;8\right)=\left\{280;560;...\right\}\)
d: \(12=2^2\cdot3;18=3^2\cdot2\)
=>\(BCNN\left(12;18\right)=2^2\cdot3^2=36\)
=>\(BC\left(12;18\right)=\left\{36;72;...\right\}\)
e: \(15=3\cdot5;18=3^2\cdot2\)
=>\(BCNN\left(15;18\right)=3^2\cdot2\cdot5=90\)
=>\(BC\left(15;18\right)=\left\{90;180;...\right\}\)
f: \(84=2^2\cdot3\cdot7;108=3^3\cdot2^2\)
=>\(BCNN\left(84;108\right)=2^2\cdot3^3\cdot7=756\)
=>\(BC\left(84;108\right)=\left\{756;1512;...\right\}\)
j: \(33=3\cdot11;44=2^2\cdot11;55=5\cdot11\)
=>\(BCNN\left(33;44;55\right)=3\cdot2^2\cdot5\cdot11=660\)
=>\(BC\left(33;44;55\right)=\left\{660;1320;...\right\}\)
g: \(1=1;12=2^2\cdot3;27=3^3\)
=>\(BCNN\left(1;12;27\right)=1\cdot2^2\cdot3^3=108\)
=>\(BC\left(1;12;27\right)=\left\{108;216;...\right\}\)
n: \(5=5;9=3^2;11=11\)
=>\(BCNN\left(5;9;11\right)=5\cdot3^2\cdot11=495\)
=>\(BC\left(5;9;11\right)=\left\{495;990;...\right\}\)
Bài 1: tìm ƯCLN của
24; 36 và 60
12; 15 và 10
24;16 và 8
9 và 81
11 và 15
1 và 10
150 và 84
46 và 138
16; 32 và 112
14; 82 và 124
15; 55 và 75
150; 84 và 30
24; 36 và 160
24 = 23.3; 36 = 24.34; 60 = 22.3.5
ƯCLN( 24; 36; 60) = 22.3 = 12
12 = 22.3; 15 = 3.5; 10 = 2.5
ƯCLN(12; 15; 10) = 1
24 = 23.3; 16 = 24; 8 = 23
ƯCLN(24; 16; 8) = 23
9 = 32; 81 = 34
ƯCLN( 9; 81) = 9
11 = 11; 15 = 3.5
ƯCLN( 11; 15) = 1
1 = 1; 10 = 2.5
ƯCLN(1; 10) = 1
150 = 2.3.52; 84 = 22.3.7
ƯCLN( 150; 84) = 6
46 = 2.23; 138 = 2.3.23
ƯCLN(46; 138) = 2.23 = 46
16 = 24; 32 = 25; 124 = 22.31
ƯCLN( 16; 32; 124) = 22 = 4
14 = 2.7; 82 = 2.41; 124 = 22.31
ƯCLN( 14; 82; 124) = 2
1)tìm BCLN của
a)5 và 8;12 và 18;7 và 14;12 và 19
b)15 và 25;30 và 60;75 và 15;25 và 5
a, 5 và 8 =40 ; 12 và 18 = 36 ; 7 và 14 =14 ; 12 và 19 =228
b, 15 , 25 = 75 ; 30,60 = 60 ; 75 và 15 =75 ; 25,5 =25
Bài 2: Tìm ƯC thông qua tìm ƯCLN
a) 40 và 24 b) 12 và 52 c) 36 và 990 d) 54 và 36 e) 10, 20 và 70 f) 25; 55 và 75 | g) 80 và 144 h) 63 và 2970 i) 65 và 125 j) 9; 18 và 72 k) 24; 36 và 60 l) 16; 42 và 86 |
\(a,ƯC\left(40,24\right)=Ư\left(8\right)=\left\{...\right\}\\ b,ƯC\left(12,52\right)=Ư\left(4\right)=\left\{...\right\}\\ c,ƯC\left(36,990\right)=Ư\left(18\right)=\left\{...\right\}\\ d,ƯC\left(54,36\right)=Ư\left(9\right)=\left\{...\right\}\\ e,ƯC\left(10,20,70\right)=Ư\left(10\right)=\left\{...\right\}\\ f,ƯC\left(25,55,75\right)=Ư\left(5\right)=\left\{...\right\}\\ g,ƯC\left(80,144\right)=Ư\left(16\right)=\left\{...\right\}\\ h,ƯC\left(63,2970\right)=Ư\left(9\right)=\left\{...\right\}\\ i,ƯC\left(65,125\right)=Ư\left(5\right)=\left\{...\right\}\\ j,ƯC\left(9,18,72\right)=Ư\left(9\right)=\left\{...\right\}\\ k,ƯC\left(24,36,60\right)=Ư\left(12\right)=\left\{...\right\}\\ l,ƯC\left(16,42,86\right)=Ư\left(2\right)=\left\{..\right\}\)
a:UC(40;24)=Ư(8)
b: UC(12;52)=Ư(4)
tìm ước chung lớn nhất của
a,18 và 42
b,28 và 48
c,24;36 và 60
d,12;15 và 10
e,24;16 và 8
f,16;32 và 122
g.14;82 và 124
h.25;55 và 75
i.150;84 và 30
j.24 ; 36 và 160
a: 18=3^2*2; 42=2*3*7
=>ƯCLN(18;42)=3*2=6
b: 28=2^2*7
48=2^4*3
=>ƯCLN(28;48)=2^2=4
c: 24=2^3*3
36=2^2*3^2
60=2^2*3*5
=>ƯCLN(24;36;60)=12
d: 12=2^2*3
15=3*5
10=2*5
=>ƯCLN(12;15;10)=1
e: 24=2^3*3
16=2^4
8=2^3
=>ƯCLN(24;16;8)=2^3=8
h: 25=5^2; 55=5*11; 75=5^2*3
=>ƯCLN(25;55;75)=5