Nếu a − b > b + a, thì….
A. ab < 0
B. −2b < 2a
C. |a − b| > |a + b|
D. −3b > 3b
E. b = a
a)cmr nếu a>b thì 3a+2b≥3b+2a b)(a-b)²≤2(a²+b²) c)(2a-b)²≤5(a²+b²)
a: 3a+2b>=3b+2a
=>3a-2a>=3b-2b
=>a>=b(đúng)
b: =>a^2-2ab+b^2<=2a^2+2b^2
=>2a^2+2b^2-a^2+2ab-b^2>=0
=>(a+b)^2>=0(luôn đúng)
c: =>5a^2+5b^2>=4a^2-4ab+b^2
=>a^2+4ab+4b^2>=0
=>(a+2b)^2>=0(luôn đúng)
Tính S = a + b + c + d + e
a) c = 2a ; d = 2b ; 6b + 5c = 6e ; 2a + 3b = 2e ; d - a = 40
b) 3b = 4a ; 3d = 4c ; 3b + c = 2e ; 6d - a = 5e ; c - b = 1
c) 3b = 4a ; 3d = 4c ; 3b + c = 2e ; 4e + b = 5d ; d - a = 5
1. Cho \(a,b,c>0\) và \(ab+bc+ca=abc\). Chứng minh rằng:
\(\dfrac{1}{a+3b+2c}+\dfrac{1}{b+3c+2a}+\dfrac{1}{c+3a+2b}\le\dfrac{1}{6}\)
2. Cho \(a,b\ge0\) và \(a+b=2\) Tìm Max
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+20ab\)
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
2,
\(ab\le\dfrac{1}{4}\left(a+b\right)^2=1\Rightarrow0\le ab\le1\)
\(E=9a^2b^2+6\left(a^3+b^3\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+5ab\left(a+b\right)+24ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(ab=x\Rightarrow0\le x\le1\)
\(E=9x^2-2x+48=\left(x-1\right)\left(9x+7\right)+55\le55\)
\(E_{max}=55\) khi \(x=1\) hay \(a=b=1\)
rút gọn theo quy tắc đấu ngoặc
A =(a+b-2c) -(-a+b+c) -(2a-b-c)
B=-(2a-b+c) + (b-2c-3a) -(-5a-3c+b)
C=(3a-b-2c)-( 2b+3c-a) +(2a-3b)
D=(5a-3b+c) +( 2a-3b+5) -( b-c+a)
A =(a+b-2c) -(-a+b+c) -(2a-b-c)
= a+b-2c+a-b-c-2a+b+c
= b-2c
B=-(2a-b+c) + (b-2c-3a) -(-5a-3c+b)
= -2a+b-c+b-2c-3a+5a+3c-b
= b-c
C=(3a-b-2c)-( 2b+3c-a) +(2a-3b)
= a-b-2c-2b-3c+a+2a-3b
= -6b-5c
D=(5a-3b+c) +( 2a-3b+5) -( b-c+a)
= 5a-3b+c+2a-3b+5-b+c-a
= 6a-7b+2c
\(A=\left(a+b-2c\right)-\left(-a+b+c\right)-\left(2a-b-c\right)\)
\(=a+b-2c+a-b-c-2a+b+c=b-2c\)
\(B=-\left(2a-b+c\right)+\left(b-2c-3a\right)-\left(-5a-3c+b\right)\)
\(=-2a+b-c+b-2c-3a+5a+3c-b=b\)
\(C=\left(3a-b-2c\right)-\left(2b+3c-a\right)+\left(2a-3b\right)\)
\(=3a-b-2c-2b-3c+a+2a-3b=6a-6b-5c\)
\(D=\left(5a-3b+c\right)+\left(2a-3b+5\right)-\left(b-c+a\right)\)
\(=5a-3b+c+2a-3b+5-b+c-a=6a-7b+2c\)
Nếu a+2c>b+c thì bất đẳng thức nào sau đây đúng?
a.-3a>-3b b.a^2 > b^2 c.2a>2b
Lời giải:
$a+2c> b+c$
$\Rightarrow a> b-c$
Không có cơ sở nào để xác định xem biểu BĐT nào đúng.
Phá ngoặc rồi viết gọn
1 , a - ( a - b - c ) - ( b - c -a ) - ( c - b -a )
2 , - ( a + b + c ) - ( b - c -a ) + ( 1 - a - b ) - ( c - 3b )
3 , ( b - c - 6 ) - ( 7 - a + b ) + c
4 , - ( 3b - 2a - c ) - ( a - b - c ) - ( a - 2b -+ 2c )
5 , ( 4a - 3b + 2c ) - ( 4b - 3c - 2a ) - ( 4c - 3a + 2b ) + ( a - b ) - c
6, 2a - { a - b [ a - b - ( a + b + c ) + 2b ] - c - b }
Phá ngoặc rồi viết gọn
1 , a - ( a - b - c ) - ( b - c -a ) - ( c - b -a )
2 , - ( a + b + c ) - ( b - c -a ) + ( 1 - a - b ) - ( c - 3b )
3 , ( b - c - 6 ) - ( 7 - a + b ) + c
4 , - ( 3b - 2a - c ) - ( a - b - c ) - ( a - 2b -+ 2c )
5 , ( 4a - 3b + 2c ) - ( 4b - 3c - 2a ) - ( 4c - 3a + 2b ) + ( a - b ) - c
6, 2a - { a - b [ a - b - ( a + b + c ) + 2b ] - c - b }
1 , a - ( a - b - c ) - ( b - c -a ) - ( c - b -a )
= a - a + b + c - b + c + a - c + b + a
= (a-a+a) + (b-b+b) + (c-c+c)
= a+b+c
2 , - ( a + b + c ) - ( b - c -a ) + ( 1 - a - b ) - ( c - 3b )
= -a - b - c - b + c + a + 1 - a - b - c + 3b
= (a+a-a) - (b+b+b) + (c-c+c) + 3b
= a - 3b + c + 3b
= a+c + (3b - 3b)
= a+c + 0
= a+c
3 , ( b - c - 6 ) - ( 7 - a + b ) + c
= b - c - 6 - 7 + a - b + c
= (b-b) + (c-c) - (6+7) + a
= 0 + 0 - 13 + a
= -13 + a
4 , - ( 3b - 2a - c ) - ( a - b - c ) - ( a - 2b -+ 2c )
= -3b + 2a + c - a + b + c - a + 2b - 2c
= -3b + (2b + b) + (c + c) - (a+a) +2a - 2c
= -3b + 3b + 2c - 2a + 2a - 2c
= (3b - 3b) + (2c - 2c) + (2a + 2a)
= 0 + 0 + 0
= 0
chỉ bt lm đến đây thoy
i-------------7jhmnjbn,j,mn.kmlk.jk,hkghnmgvbvcbvcbcvbcvbcbbccbcbcb
''';l';.;';p''ơ'cho tỷ lệ thức a/b=c/d.CMR
a)a+b/b=c+d/d.
b)a/a+b=c/c+d
c)2a+3c/2b+3b=2a-3a/2b-3b
Các bạn giải bằng cách đặt theo k giúp mk nha! Thanks mn nhiều!!!!
có a+b/b=k=>a+b=b.k=>b.k/b=k
c+d/d=k=>c+d=d.k=>d.k/d=k
=>a+b/b=c+d/d
cho a,b,c,d thỏa mãn: (a+b)(2a-a-4)=(a-2b)(5-a-b). Tính \(\frac{2a^2-3b^2}{ab+b^2}\)