tìm số tự nhiên nhỏ nhất biết rằng khi chia số đó cho 3;5;7;9 thì dư lần lượt là 2;4;6;8
1/tìm số tự nhiên nhỏ nhất có 3 chữ số biết rằng số đó chia cho 4,6,8 đều dư 32/tìm số tự nhiên nhỏ nhất sao cho khi chia 11 dư 6,chia cho 4 dư 1,chia cho 19 dư 113/tìm số tự nhiên nhỏ nhất sao cho a chia 5 dư 3,a chia 7 dư 44/tìm số tự nhiên nhỏ nhất bt đc chia cho 3 cho 4 cho 5 cho 6 đều dư 2 còn chia cho 7 thì dư 3.
1, Gọi số đó là :a
=>a-3⋮4,6,8
=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)
=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)
Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.
Tìm kiếm bài học, bài tập, mã lớp, mã khóa học...
hehe
tìm số tự nhiên nhỏ nhất, biết rằng số đó khi chia cho 3;4;5;6 đều dư 2. Nhưng khi chia cho 7 thì dư 3
Tìm số tự nhiên nhỏ nhất có 3 chữ số biết rằng khi chia số đó cho 12 thì dư 8 và khi chia số đó cho 20 thì thiếu 8
Gọi số phải tìm là a ( \(100\le a\le999\)
a chia 12 dư 8 nên \(a-8⋮12\Rightarrow a+36-8⋮12\Rightarrow a+28⋮12\)
a chia 20 thiếu 8 nên\(a+8⋮20\Rightarrow a+20+8⋮20\Rightarrow a+28⋮20\)
\(\Rightarrow a+28\in BC\left(12,20\right)=B\left(60\right)=\left\{0;60;120;180....\right\}\)
vì a là số nhỏ nhất có 3 chữ số nên thử lần lượt các giá trị ta có: \(a+28=180\Rightarrow a=152\)
Tìm số tự nhiên nhỏ nhất ,biết rằng số đó khi chia cho 3,4,5,6 đều dư 2 còn chia 7 dư 3
gọi số đó là a thì a-2 chia hết cho 3,4,5,6 và a-2 chia 7 dư 1
để a nhỏ nhất => a-2 nhỏ nhất => a-2=120=>a=122
goi so do la a thi a -2 chia het cho 3,4,5,6 va a-2 chia 7 du 1
de a nho nhat => a-2 nho nhat => a-2 =120 => a=122
nho k minh nha ban !
chuc ban hoc gioi
Tìm số tự nhiên nhỏ nhất có 3 chữ số,biết rằng số đó khi chia cho 11 thì dư 5,khi chia cho 13 thì dư 8.
Lời giải:
Gọi số tự nhiên cần tìm là $a$. Theo bài ra thì:
$a$ chia $13$ dư $8$ nên $a=13k+8$ với $k$ tự nhiên.
Mà $a$ chia 11 dư 5 nên:
$a-5\vdots 11$
$\Rightarrow 13k+3\vdots 11$
$\Rightarrow 13k+3-11.5\vdots 11$
$\Rightarrow 13k-52\vdots 11$
$\Rightarrow 13(k-4)\vdots 11$
$\Rightarrow k-4\vdots 11$
$\Rightarrow k=11m+4$ với $m$ tự nhiên.
$a=13k+8=13(11m+4)+8=143m+60$
Để $a$ là số tự nhiên nhỏ nhất có 3 chữ số thì $m$ cũng phải là stn nhỏ nhất thỏa mãn $143m+60$ có 3 c/s.
$\Rightarrow 143m+60\geq 100\Rightarrow m\geq 0,27$
Mà $m\in\mathbb{N}$ nên $m$ nhỏ nhất bằng 1.
$\Rightarrow a=143+60=203$
tìm số tự nhiên nhỏ nhất, biết rằng số đó khi chia cho 3, cho 4,cho 5, cho 6 đều dư 12, còn chia cho 7 thì dư 3.tìm số đó?
gọi số đó là a
vì a chia 3,4,5,6 đều dư 12
=>(a-12) chia hết 3,4,5,6
=>(a-12) thuộc BC(3,4,5,6)
3=3 ; 4=2^2 ; 5=5 ; 6=2*3
BCNN(3,4,5,6) = 2^2*3*5 =60
BC(3,4,5,6)=B(60)= {0;60;120;180;...}
vì a nhỏ nhất và chia 7 dư 3 =>(a-12) -3 chia hết cho 7 và là nhỏ nhất
từ tập hợp trên => (a-12)=180 =>a=192
thế đó, nói thật nó chẳng khó gì nhưng mình có làm sai thì nhắc nhé ^-^
Tìm số tự nhiên nhỏ nhất,biết rằng khi chia số đó cho 29 dư 5,còn khi chia cho 31 thì dư 28.Tìm số đó
c1
Nếu chia hết cho 29 thì chia cho 31 dư 28-5=23.
Hiệu của 31 và 29: 31 - 29 = 2
Thương của phép chia cho 31 là:
(29-23) : 2 = 3
(Hoặc. Gọi a là thương lúc này của phép chia cho 31.
2 x a + 23 = 29 => a = 3)
Số cần tìm là:
31 x 3 + 28 = 121
Đáp số: 121
c2
Bài giải:
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
tk nha mk trả lời đầu tiên đó!!!
Gọi số tự nhiên cần tìm là A Chia cho 29 dư 5 nghĩa là:
A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất Do đó p – q = 1
=> 2q = 29 – 23 = 6 => q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 có nghĩa là:A= 29p + 5 (p \(\varepsilon\)N)
Tương tự : A = 31p +28 (p \(\varepsilon\)N)
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là:A = 31q + 28 = 31. 3 + 28 = 121
Tìm số tự nhiên nhỏ nhất có 3 chữ số, biết rằng khi chia số đó cho 2 dư 1, chia cho 3 dư 2 và chi cho 4 dư 3
Gọi số tự nhiên cần tìm là a(Điều kiện: \(99< a< 1000;a\in N\))
Vì a chia 2 dư 1 nên a+1 chia hết cho 2
Vì a chia 3 dư 2 nên a+1 chia hết cho 3
Vì a chia 4 dư 3 nên a+1 chia hết cho 4
Do đó: \(a+1\in BC\left(2;3;4\right)\)
\(\Leftrightarrow a+1\in\left\{12;24;36;...;96;108;120;...\right\}\)
mà a+1 là số tự nhiên nhỏ nhất có 3 chữ số
nên a+1=108
hay a=107
Vậy: Số tự nhiên cần tìm là 107
Gọi số tự nhiên cần tìm là a(Điều kiện: )
Vì a chia 2 dư 1 nên a+1 chia hết cho 2
Vì a chia 3 dư 2 nên a+1 chia hết cho 3
Vì a chia 4 dư 3 nên a+1 chia hết cho 4
Do đó:
mà a+1 là số tự nhiên nhỏ nhất có 3 chữ số
nên a+1=108
hay a=107
Vậy: Số tự nhiên cần tìm là 107
tìm số tự nhiên nhỏ nhất , biết rằng số đó khi chia cho 3 , 5 , 7 có số dư lần lượt là 1, 3 , 1
Gọi số cần tìm là x( \(x\in N\))
Có \(\left\{{}\begin{matrix}x+62⋮3\\x+62⋮5\\x+62⋮7\end{matrix}\right.\)
=> x + 62 thuộc bội chung của 3,5,7
Mà x nhỏ nhất
=> x + 62 = 105
=> x = 43
tìm số tự nhiên nhỏ nhất , biết rằng số đó khi chia cho 3 , 5 , 7 có số dư lần luọt là 1, 3 , 1