Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Quân Bảo
Xem chi tiết
Akai Haruma
11 tháng 11 2023 lúc 16:02

Lời giải:
$x^2-2xy+6y^2-12x+2y+41=0$

$\Leftrightarrow (x^2-2xy+y^2)+5y^2-12x+2y+41=0$

$\Leftrightarrow (x-y)^2-12(x-y)+36+5y^2-10y+5=0$

$\Leftrightarrow (x-y-6)^2+5(y-1)^2=0$

Vì $(x-y-6)^2\geq 0; (y-1)^2\geq 0$ với mọi $x,y$

Do đó để tổng trên bằng $0$ thì bản thân mỗi số trên bằng $0$

$\Rightarrow x-y-6=y-1=0$

$\Rightarrow y=1; x=7$

$\Rightarrow P=2021(10-7-2)^{2021}-8(6-7)^{2022}$

$=2021-8=2013$

Nguyễn Chí Thành
Xem chi tiết
Minh MPT
Xem chi tiết
Hoài Thu Vũ
Xem chi tiết
Gia Huy
21 tháng 6 2023 lúc 15:55

a)

Ta có: $2x^2+2y^2=5xy \Leftrightarrow 2\frac{x}{y}+\frac{y}{x}=5$

Đặt $t=\frac{x}{y}$, ta có $2t+\frac{1}{t}=5 \Rightarrow 2t^2-5t+1=0$

Giải phương trình trên ta được $t_1=\frac{1}{2}$ và $t_2=1$. Vì $0<x<y$ nên $t>0$, do đó $t=\frac{x}{y}=\frac{1}{2}$.

Từ đó suy ra $x=\frac{y}{2}$ và thay vào biểu thức $E$ ta được:

$E=\frac{x^2+y^2}{x^2-y^2}=\frac{\frac{y^2}{4}+y^2}{\frac{y^2}{4}-y^2}=-\frac{5}{3}$

Vậy kết quả là $E=-\frac{5}{3}$.

Gia Huy
21 tháng 6 2023 lúc 16:06
Gia Huy
21 tháng 6 2023 lúc 16:09

đặt $a=\frac{1}{\sqrt[3]{3-2\sqrt{2}}}$, $b=\sqrt[3]{3-2\sqrt{2}}}$

Khi đó:
$$(a+b)^3=a^3+b^3+3ab(a+b)$$
$$a^3+b^3=\left(\frac{1}{\sqrt[3]{3-2\sqrt{2}}}\right)^3+\left(\sqrt[3]{3-2\sqrt{2}}\right)^3= \frac{1}{3-2\sqrt{2}}+(3-2\sqrt{2})=4$$
$$ab=\frac{1}{\sqrt[3]{3-2\sqrt{2}}}\cdot\sqrt[3]{3-2\sqrt{2}}=\sqrt[3]{(3-2\sqrt{2})(3+2\sqrt{2})}=\sqrt[3]{1}=1$$
Do đó, ta có:
$$(a+b)^3=4+3ab(a+b)=4+3(a+b)$$
Vậy $2x^3=2(a+b)^3=8+6(a+b)$ và $6x=6(a+b)$.
Thay vào biểu thức $P$, ta được:
$$P=\left(2x^3-6x+2008\right)^{2021}=\left(8+6(a+b)-6(a+b)+2008\right)^{2021}=2016^{2021}$$
Vậy kết quả là $P=2016^{2021}$.

chung lê đức
Xem chi tiết
Ngu Ngu Ngu
2 tháng 12 2017 lúc 20:36

Giải:

Đặt \(A=x+y+2017\) Ta có: \(x^2+2xy+6x+6y+2y^2+8=0\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+y^2=-8\)

Mà \(y^2\ge0\Rightarrow\left(x+y\right)^2+6\left(x+y\right)\le-8\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9\le1\) \(\Leftrightarrow\left(x+y+3\right)^2\le1\)

\(\Rightarrow\left|x+y+3\right|\le1\Rightarrow-1\le x+y+3\le1\)

\(\Leftrightarrow2013\le A\le2015\) Dấu "=" xảy ra:

\(A_{MIN}\Leftrightarrow\hept{\begin{cases}x+y+2017=2013\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=0\end{cases}}\)

\(A_{MAX}\Leftrightarrow\hept{\begin{cases}x+y+2017=2015\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=0\end{cases}}\)

Nguyễn Thế Hiếu
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 8 2021 lúc 16:25

\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)

\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)

\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)

Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:

\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)

Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)

\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng

Tương tự: ...

\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)

\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị

Soái muội
Xem chi tiết
Vũ Ngọc Mai
Xem chi tiết
Nguyễn Tiến Minh
23 tháng 12 2016 lúc 20:39

h mk di minh tra loi noi that

Đinh Trần Thu Hương
24 tháng 12 2016 lúc 22:44

đặt t=x+y

x^2 +2xy+6x+6y+2y^2+8=0

x^2+2xy+y^2+6(x+y)+8= -y^2

(x+y)^2 + 6(x+y)+8 = -y^2

t^2 +6t +8= -y^2

(t+2)(t+4) = -y^2

do y^2 >=0 với mọi y

-y^2 <=0 với mọi y

t^2+6t+8<=0

(t+2)(t+4)<=0

* Trường hợp 1:   t+2<=0 và t+4>=0        (1)

t<=-2 và t>=4

* trường hợp 2:  t+2>=0 và t+4<=0           (2)

t>= -2 và t<= -4   ( vô nghiệm)

 Từ (1), (2) ta có:

-4<= t <=-2 

-4 <= x+y <= -2

-4 + 2016 <= x+y+ 2016 <= -2 +2016

2012 <= x+y +2016 <= 2014

Bmin= 2012

Bmax= 2014

 *Bmin= 2012 khi x+y+2016 = 2012 và -y^2= 0

thì x=-4 và y=0

* Bmax= 2014 khi x+y+2016 = 2014 và -y^2= 0

thì x=-2 và y=0

vậy Bmin= 2012 khi (x,y) = (-4, 0)

Bmax= 2014 khi (x,y)= (-2,0)

MaiLinh
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 9 2021 lúc 22:16

\(x^2+2xy+6x+6y+2y^2+8=0\\ \Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+y^2=-8\)

Ta có \(y^2\ge0\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)\le-8\)

\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9\le1\\ \Leftrightarrow\left(x+y+3\right)^2\le1\\ \Leftrightarrow\left|x+y+3\right|\le1\\ \Leftrightarrow-1\le x+y+3\le1\\ \Leftrightarrow2012\le B\le2014\)

\(B_{min}=2012\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2012\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=0\end{matrix}\right.\)

\(B_{max}=2014\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2014\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)