Cho x2−4x+1=0.
Tính trị của biểu thức. A=
x4+x2+1/x2
Câu
Tính giá trị biểu thức A = x 4 + x 2 + 1 x 2 biết x 2 - 4 x + 1 = 0
Gọi x1 , x2 là nghiệm của pt x^2+2009x+1=0 và x3,x4 là nghiệm của pt x^2 +2010 +1=0
Tính giá trị biểu thức (x1+x3)(x2+x3)(x1-x4)(x2-x4)
B2: Rút gọn biểu thức sau:
a, (x + 3)2 - x(3x + 1)2 + (2x + 1)(4x2 -2x +1)=28
c, ( x2 - 1) - (x4 + x2 + 1)(x2 - 1) = 0
B3: Tính giá trị của biểu thức:
a, ( x - 1)(x -2)(1 + x + x2)(4 + 2x + x2) với x = 1
b, (x - 1)3 - 4x(x + 1)(x - 1) + 3(x - 1)(x2 + x + 1) với x= -2
B5: C/m biểu thức sau ko phụ thuộc vào giá trị của biến:
y(x2 - y2)(x2 + y2) - y(x4 - y4)
Giúp mình vs tuần sau jk học r T.T
Cho hai phương trình x2+2022x+1=0 (1) và x2+2023x+1 (2).Gọi x1,x2 là nghiệm của phương trình (1) ; x3,x4 là nghiệm của phương trình (2).Giá trị của biểu thức P=(x1+x3)(x2+x3)(x1-x4)(x2-x4) là
A.4045 B.-1 C.1 D.0
cho x2-9x+1=0, và x khác o . tính giá trị biểu thức V= x4+x2+1/5x2
\(x^2-9x+1=0\)
\(\Rightarrow\Delta=\left(-9\right)^2-4\cdot1\cdot1=77>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x_1=\dfrac{9+\sqrt{77}}{2}\\x_2=\dfrac{9-\sqrt{77}}{2}\end{matrix}\right.\)
Ta có:
\(V=x^4+x^2+\dfrac{1}{5}x^2=x^4+\dfrac{6}{5}x^2\)
Thay \(x_1,x_2\) vào V ta có:
\(V_1=\left(\dfrac{9+\sqrt{77}}{2}\right)^4+\dfrac{6}{5}\left(\dfrac{9+\sqrt{77}}{2}\right)^2\approx6333\)
\(V_2=\left(\dfrac{9-\sqrt{77}}{2}\right)^4+\dfrac{6}{5}\left(\dfrac{9-\sqrt{77}}{2}\right)^2\approx0,015\)
Gọi x1, x2 là nghiệm của phương trình x^2+2009x+1=0,
x3,x4 là nghiệm của phương trình x^2+2010x+1=0.
Tính giá trị biểu thức (x1+x3)(x2+x3)(x1-x4)(x2-x4)
Cho x+y=4 và x2+y2=10. Tính giá trị của biểu thức M=x6+y6
Cho 8x3-32y-32x2y+8x=0 và y khác 0. Tính giá trị của biểu thức M=3x+2y/3x-2y
Cho x2-5x+1=0 . Tính giá trị của biểu thức M=x4+x21/2x2
Giải giúp mình với!!!
Bài 1:
$2xy=(x+y)^2-(x^2+y^2)=4^2-10=6\Rightarrow xy=3$
$M=x^6+y^6=(x^3+y^3)^2-2x^3y^3$
$=[(x+y)^3-3xy(x+y)]^2-2(xy)^3=(4^3-3.3.4)^2-2.3^3=730$
Bài 2:
$8x^3-32y-32x^2y+8x=0$
$\Leftrightarrow (8x^3+8x)-(32y+32x^2y)=0$
$\Leftrightarrow 8x(x^2+1)-32y(1+x^2)=0$
$\Leftrightarrow (8x-32y)(x^2+1)=0$
$\Rightarrow 8x-32y=0$ (do $x^2+1>0$ với mọi $x$)
$\Leftrightarrow x=4y$
Khi đó:
$M=\frac{3.4y+2y}{3.4y-2y}=\frac{14y}{10y}=\frac{14}{10}=\frac{7}{5}$
Bài cuối $x^21$ không rõ. Bạn xem lại.
Tìm giá trị lớn nhất của biểu thức A=x2/x4+x2+1
Cho biểu thức sau :
B=[(x4−x+x−3x3+1).(x3−2x2+2x−1)(x+1)x9+x7−3x2−3+1−2(x+6)x2+1].4x2+4x+1(x+3)(4−x)[(x4−x+x−3x3+1).(x3−2x2+2x−1)(x+1)x9+x7−3x2−3+1−2(x+6)x2+1].4x2+4x+1(x+3)(4−x)a, Tìm giá trị của x để giá trị của biểu thức B được xác định
b, Rút gọn B
c, Cmr với các giá trị của x mà giá trị của biểu thức xác định thì −5≤B≤0