Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Chí Công
Xem chi tiết
Kathy Nguyễn
15 tháng 2 2016 lúc 12:12

thế abc=2 vào M ta có 

M=\(\frac{a}{ab+b+abc}\)\(\frac{b}{bc+b+1}\)\(\frac{abc^2}{ac+abc^2+abc}\)

M=\(\frac{a}{a\left(bc+b+1\right)}\)+\(\frac{b}{bc+b+1}\)\(\frac{abc^2}{ac\left(bc+b+1\right)}\)

M=\(\frac{bc+b+1}{bc+b+1}\)=1

1 nha bạn cho mình nha

Thieu Gia Ho Hoang
15 tháng 2 2016 lúc 11:21

moi hok lop 6

Phan Chí Công
Xem chi tiết
Nữ Hoàng Họ Nguyễn
6 tháng 2 2016 lúc 10:57

34247 nhe nhé chúc mừng năm mới

Phan Chí Công
6 tháng 2 2016 lúc 10:58

trả lời dầy đủ cho mình vs nha

Hồ Quế Ngân
Xem chi tiết
Ngọc Vô Tâm
17 tháng 2 2017 lúc 11:03

Ta có ; \(\frac{a}{ab+a+2}\)+\(\frac{b}{bc+b+1}\)+\(\frac{c}{ac+2c+2}\)

=\(\frac{a}{ab+a+2}\)+\(\frac{ab}{abc+ab+a}\)+\(\frac{c}{ac+2c+abc}\)

=\(\frac{a}{ab+a+2}\)+\(\frac{ab}{a+ab+2}\)+\(\frac{c}{c\left(a+2+ab\right)}\)

=\(\frac{a}{ab+a+2}\)+\(\frac{ab}{a+ab+2}\)+\(\frac{1}{a+ab+2}\)

=\(\frac{a+ab+1}{ab+a+2}\)

Đề bài này hình như có gì sai bạn ạ

đáng ra phải là \(\frac{2c}{ac+2c+2}\) chứ

Trần Thiên Kim
17 tháng 2 2017 lúc 11:26

Đề đúng là \(\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+2}\)

Đây là toán violympic nên có vài mẹo nhỏ để làm nhanh hơn nhé!

Đối với bài này, có abc=2, ta có thể cho a=1,b=1,c=2.

Thay số vào \(M=\frac{1}{1+1+2}+\frac{1}{2+1+1}+\frac{4}{2+4+2}\)= \(\frac{1}{4}+\frac{1}{4}+\frac{1}{2}=1\)

(Bạn có thể thử kết quả với các số a,b,c khác)

Pham Sam Sam
Xem chi tiết
Nguyễn Đình Nam
Xem chi tiết
Nguyễn Thiên Kim
12 tháng 12 2016 lúc 21:45

Thay abc = 2017 vào A ta có:

\(A=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc^2}{ac+abc^2+abc}\)

   \(=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{bc}{1+bc+b}=1\)

Thịnh Iruky
14 tháng 12 2016 lúc 21:25

những dạng có cho tích hoặc tổng bằng một số nào đó và trog đa thức cần tính có tích hoặc tổng hoặc số đó thj kiểu j cx p thay vào bn ak.

hỳ mik tự rút đc kinh nghiệm đó mờ

trinh thi hoai anh
17 tháng 12 2016 lúc 17:53

ta co:A=1

Mi Trần
Xem chi tiết
Hoàng Phúc
10 tháng 7 2016 lúc 20:58

\(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{a.b}{a.\left(bc+b+1\right)}+\frac{c}{ac+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+1}\)

Vì abc=1

\(=>M=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{c}{ac+c+abc}=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{c}{c\left(a+ab+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}=\frac{ab+a+1}{ab+a+1}=1\)

Vậy M=1

Minh Triều
10 tháng 7 2016 lúc 20:59

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+abc}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{1}{a+1+ab}=\frac{ab+a+1}{ab+a+1}=1\)

Đinh Thùy Linh
10 tháng 7 2016 lúc 21:01

\(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(M=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{c}{ac+c+abc}\); abc = 1 => a;b;c khác 0.

\(\Rightarrow M=\frac{1}{b+1+bc}+\frac{b}{bc+b+1}+\frac{1}{a+1+ab}=\frac{b+1}{bc+b+a}+\frac{abc}{a+abc+ab}\)

\(\Rightarrow M=\frac{b+1}{bc+b+a}+\frac{bc}{1+bc+b}=\frac{bc+b+1}{bc+b+1}=1\)

nam do
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 3 2019 lúc 18:37

Trước hết ta chứng minh bài toán quen thuộc:

Cho \(abc=1\) thì \(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}=1\)

\(VT=\frac{1}{ab+b+1}+\frac{1}{bc+c+abc}+\frac{b}{abc+ab+b}=\frac{1}{ab+b+1}+\frac{1}{c\left(b+1+ab\right)}+\frac{b}{1+ab+b}\)

\(=\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}=\frac{1+ab+b}{ab+b+1}=1\)

\(P=\sum\frac{1}{a^2+2b^2+3}=\sum\frac{1}{a^2+b^2+b^2+1+2}\le\sum\frac{1}{2ab+2b+2}=\frac{1}{2}\sum\frac{1}{ab+b+1}=\frac{1}{2}\)

\(\Rightarrow P_{max}=\frac{1}{2}\) khi \(a=b=c=1\)

Nguyễn Việt Lâm
11 tháng 3 2019 lúc 15:41

\(P=\sum\frac{1}{a^2+1+2\left(b^2+1\right)}\le\sum\frac{1}{2a+4b}=\frac{1}{2}\sum\frac{1}{a+b+b}\le\frac{1}{18}\sum\left(\frac{1}{a}+\frac{2}{b}\right)\)

\(\Rightarrow P\le\frac{1}{18}\left(\frac{3}{a}+\frac{3}{b}+\frac{3}{c}\right)=\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{6}.3\sqrt[3]{\frac{1}{abc}}=\frac{1}{2}\)

\(\Rightarrow P_{max}=\frac{1}{2}\) khi \(a=b=c=1\)

Bảo Nguyễn Ngọc
Xem chi tiết
Minh Quân Nguyễn
Xem chi tiết
Minh Quân Nguyễn
26 tháng 1 2017 lúc 9:34

cho mình xửa lại một chút nha:tính :  A=\(\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ca+2c+2}\)