42 + 33 LÀ :
A.42 B.55 C.32 D.43
Chứng tỏ rằng, mỗi tổng hoặc hiệu sau đây là một số chính phương:
a) 3 2 + 4 2
b) 13 2 - 5 2
c) 1 3 + 2 3 + 3 3 + 4 3
Chứng tỏ rằng, mỗi tổng hoặc hiệu sau đây là một số chính phương:
a, 3 2 + 4 2
b, 13 2 - 5 2
c, 1 3 + 2 3 + 3 3 + 4 3
a, 3 2 + 4 2 = 25 = 5 2 là số chính phương.
b, 13 2 - 5 2 = 144 = 12 2 là số chính phương.
c, 1 3 + 2 3 + 3 3 + 4 3 = 100 = 10 2 là số chính phương.
Bài Toàn 16 : Tính tổng
a) S = 1 + 2 + 22 + 23 + … + 22017
b) S = 3 + 32 + 33 + ….+ 32017
c) S = 4 + 42 + 43 + … + 42017
d) S = 5 + 52 + 53 + … + 52017
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$
a)\(...A=\dfrac{2^{50+1}-1}{2-1}=2^{51}-1\)
b) \(...\Rightarrow B=\dfrac{3^{80+1}-1}{3-1}=\dfrac{3^{81}-1}{2}\)
c) \(...\Rightarrow C+1=1+4+4^2+4^3+...+4^{49}\)
\(\Rightarrow C+1=\dfrac{4^{49+1}-1}{4-1}=\dfrac{4^{50}-1}{3}\)
\(\Rightarrow C=\dfrac{4^{50}-1}{3}-1=\dfrac{4^{50}-4}{3}=\dfrac{4\left(4^{49}-1\right)}{3}\)
Tương tự câu d,e,f bạn tự làm nhé
Bài toán 1: Tính giá trị các lũy thừa sau :
a) 22, 23, 24 , 25 , 26 , 27 , 28 , 29 , 210.
b) 32, 33, 34 , 35.
c) 42, 43, 44.
d) 52, 53, 54.
trên đầu bài là giấu phẩy hay giấu nhân thế
\(a,2^2=4,2^3=8,2^4=16,2^5=32,2^6=64,2^7=128,2^8=256,2^9=512,2^{10}=1024\)
\(b,3^2=9,3^3=27,3^4=81,3^5=243\)
\(c,4^2=16,4^3=64,4^4=256\)
\(d,5^2=25,5^3=125,5^4=625\)
a: \(2^2=4\)
\(2^3=8\)
\(2^4=16\)
\(2^5=32\)
\(2^6=64\)
\(2^7=128\)
\(2^8=256\)
\(2^9=512\)
\(2^{10}=1024\)
b: \(3^2=9\)
\(3^3=27\)
\(3^4=81\)
\(3^5=243\)
c: \(4^2=64\)
\(4^3=256\)
\(4^4=1024\)
d: \(5^2=25\)
\(5^3=125\)
\(5^4=625\)
C=1+3+32+33+...+311 . Chứng minh rằng C ⋮ 40
D=1+4+42+43+...+458+459 . Chứng minh rằng D ⋮ 21
\(C=1+3+3^2+3^3+\cdot\cdot\cdot+3^{11}\)
\(C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\)
\(=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(=40+3^4\cdot40+3^8\cdot40\)
\(=40\cdot\left(1+3^4+3^8\right)\)
Vì \(40\cdot\left(1+3^4+3^8\right)⋮40\)
nên \(C⋮40\)
#\(Toru\)
\(C=1+3+3^2+3^3+...+3^{11}\)
\(\Rightarrow C=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)+3^8\left(1+3+3^2+3^3\right)\)
\(\Rightarrow C=40+3^4.40+3^8.40\)
\(\Rightarrow C=40\left(1+3^4+3^8\right)⋮40\)
\(\Rightarrow dpcm\)
Tính giá trị các biểu thức sau:
a, A = 2 10 - 2 5
b, B = 4 3 - 4 2 - 4
c, C = 3 2 . 2 3 + 4 3 . 2 5
d, D = 1 3 + 2 3 + 3 3 + 4 3 + 5 3
a, A = 2 10 - 2 5 = 1024 - 32 = 992
b, B = 4 3 - 4 2 - 4 = 64 - 16 - 4 = 44
c, C = 3 2 . 2 3 + 4 3 . 2 5 = 9.8 + 64.32 = 2120
d, D = 1 3 + 2 3 + 3 3 + 4 3 + 5 3 = 1 + 8 + 27 + 64 + 125 = 225
Tính giá trị các biểu thức sau:
a) A = 2 10 - 2 5 ; b) B = 4 3 - 4 2 - 4 ;
c) C = 3 2 . 2 3 + 4 3 . 2 5 ; d) D = 1 3 + 2 3 + 3 3 + 4 3 + 5 3
a) A = 2 10 - 2 5 = 1024 - 32 = 992 .
b) B = 4 3 - 4 2 - 4 = 64 - 16 - 4 = 44 .
c) C = 3 2 . 2 3 + 4 3 . 2 5 = 9 . 8 + 64 . 32 = 2120 .
d) D = 1 3 + 2 3 + 3 3 + 4 3 + 5 3 = 1 + 8 + 27 + 64 + 125 = 225
Tính giá trị các biểu thức sau:
a ) A = 2 10 - 2 5 ; b ) B = 4 3 - 4 2 - 4 ; c ) C = 3 2 . 2 3 + 4 3 . 2 5 ; d ) D = 1 3 + 2 3 + 3 3 + 4 3 + 5 3 .
a ) A = 2 10 - 2 5 = 1024 - 32 = 992 . b ) B = 4 3 - 4 2 - 4 = 64 - 16 - 4 = 44 . c ) C = 3 2 . 2 3 + 4 3 . 2 5 = 9 . 8 + 64 . 32 = 2120 . d ) D = 1 3 + 2 3 + 3 3 + 4 3 + 5 3 = 1 + 8 + 27 + 64 + 125 = 225 .