giải phương trình sau: \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\) mình cần gấp
Giải các phương trình sau:
1. \(\sqrt{-4x-1}+\sqrt{4x^2+8x+3}=-4x^2-4x\)
2. \(x^2+\sqrt{x+5}=5\)
3. \(\left(x-3\right)\left(x+1\right)+4\left(x-3\right)\sqrt{\frac{x+1}{x-3}}=-3\)
4. \(\sqrt{x^2-3x+3}+\sqrt{x^2-3x+6}=3\)
Giúp mình với ạ, mình đang cần gấp. Thanks a lot <3 <3
cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~
Bài 1: Giải phương trình( đặt ẩn phụ)
a) \(\sqrt{4x^2-4x-11}=8x^2-8x-28\)
b)\(\sqrt{3x^2+9x+8}=x^2+3x-2\)
c) (x+5).(2-x) = \(\sqrt{x^2+3x}\)
d) \(\sqrt{x^2-4x+5}=x^2-4x+12\)
(mình đag cần gấp)
1/ ĐKXĐ: $4x^2-4x-11\geq 0$
PT $\Leftrightarrow \sqrt{4x^2-4x-11}=2(4x^2-4x-11)-6$
$\Leftrightarrow a=2a^2-6$ (đặt $\sqrt{4x^2-4x-11}=a, a\geq 0$)
$\Leftrightarrow 2a^2-a-6=0$
$\Leftrightarrow (a-2)(2a+3)=0$
Vì $a\geq 0$ nên $a=2$
$\Leftrightarrow \sqrt{4x^2-4x-11}=2$
$\Leftrightarrow 4x^2-4x-11=4$
$\Leftrightarrow 4x^2-4x-15=0$
$\Leftrightarrow (2x-5)(2x+3)=0$
$\Rightarrow x=\frac{5}{2}$ hoặc $x=\frac{-3}{2}$ (tm)
2/ ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{3x^2+9x+8}=\frac{1}{3}(3x^2+9x+8)-\frac{14}{3}$
$\Leftrightarrow a=\frac{1}{3}a^2-\frac{14}{3}$ (đặt $\sqrt{3x^2+9x+8}=a, a\geq 0$)
$\Leftrightarrow a^2-3a-14=0$
$\Rightarrow a=\frac{3+\sqrt{65}}{2}$ (do $a\geq 0$)
$\Leftrightarrow 3x^2+9x+8=\frac{37+3\sqrt{65}}{2}$
$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{23+2\sqrt{65}})$
3. ĐKXĐ: $x^2+3x\geq 0$
PT $\Leftrightarrow 10-(x^2+3x)=\sqrt{x^2+3x}$
$\Leftrightarrow 10-a^2=a$ (đặt $\sqrt{x^2+3x}=a, a\geq 0$)
$\Leftrightarrow a^2+a-10=0$
$\Rightarrow a=\frac{-1+\sqrt{41}}{2}$
$\Leftrightarrow x^2+3x=a^2=\frac{21-\sqrt{41}}{2}$
$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{51-2\sqrt{41}})$ (đều tm)
Giải phương trình sau:
\(\sqrt{3x-5}-\sqrt{x-2}=\dfrac{2x-3}{3}\)
Mình đang cần gấp!!!
ĐKXĐ: \(x\ge2\)
\(\dfrac{\left(\sqrt{3x-5}-\sqrt{x-2}\right)\left(\sqrt{3x-5}+\sqrt{x-2}\right)}{\sqrt{3x-5}+\sqrt{x-2}}=\dfrac{2x-3}{3}\)
\(\Leftrightarrow\dfrac{2x-3}{\sqrt{3x-5}+\sqrt{x-2}}=\dfrac{2x-3}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\Rightarrow x=\dfrac{3}{2}\left(ktm\right)\\\sqrt{3x-5}+\sqrt{x-2}=3\left(1\right)\end{matrix}\right.\)
Xét (1)
\(\Leftrightarrow\sqrt{3x-5}-2+\sqrt{x-2}-1=0\)
\(\Leftrightarrow\dfrac{3\left(x-3\right)}{\sqrt{3x-5}+2}+\dfrac{x-3}{\sqrt{x-2}+1}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{3}{\sqrt{3x-5}+2}+\dfrac{1}{\sqrt{x-2}+1}\right)=0\)
\(\Leftrightarrow x-3=0\) (do \(\dfrac{3}{\sqrt{3x-5}+2}+\dfrac{1}{\sqrt{x-2}+1}>0;\forall x\ge2\))
\(\Leftrightarrow x=3\)
Vậy pt có nghiệm duy nhất \(x=3\)
GIẢI PHƯƠNG TRÌNH:
\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}
Đặt \(\hept{\begin{cases}a=\sqrt{4x+1}\\b=\sqrt{3x-2}\end{cases}\ge}0\) thì có:
\(\Rightarrow a^2-b^2=x+3\)\(\Rightarrow a-b=\frac{a^2-b^2}{5}\)
\(\Rightarrow a-b-\frac{\left(a-b\right)\left(a+b\right)}{5}=0\)
\(\Rightarrow\left(a-b\right)\left(1-\frac{a+b}{5}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a=b\\a+b=5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}\sqrt{4x+1}=\sqrt{3x-2}\\\sqrt{4x+1}+\sqrt{3x-2}=5\end{cases}}\)\(\Rightarrow x=2\)
Giải phương trình \(x^2+4x+\sqrt{x^2-1}=2\sqrt{2x+3}-5\)
Cần gấp !!!
ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\-\dfrac{3}{2}\le x\le-1\end{matrix}\right.\)
\(\left(x^2+2x+1\right)+\left(2x+3-2\sqrt{2x+3}+1\right)+\sqrt{x^2-1}=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2+\sqrt{x^2-1}=0\)
Do \(\left\{{}\begin{matrix}\left(x+1\right)^2\ge0\\\left(\sqrt{2x+3}-1\right)^2\ge0\\\sqrt{x^2-1}\ge0\end{matrix}\right.\) với mọi x thuộc TXĐ
\(\Rightarrow\) Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(\sqrt{2x+3}-1\right)^2=0\\\sqrt{x^2-1}=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
Vậy pt có nghiệm duy nhất \(x=-1\)
giải phương trình sau: \(\sqrt{x^2+12}=3x-5+\sqrt{x^2+5}\) mình cần gấp
Ta có: \(\sqrt{x^2+12}=3x-5+\sqrt{x^2+5}\)
=>\(3x-5-1+\sqrt{x^2+5}-3=\sqrt{x^2+12}-4\)
=>\(3x-6+\frac{x^2+5-9}{\sqrt{x^2+5}+3}=\frac{x^2+12-16}{\sqrt{x^2+12}+4}\)
=>\(3\cdot\left(x-2\right)+\frac{x^2-4}{\sqrt{x^2+5}+3}=\frac{x^2-4}{\sqrt{x^2+12}+4}\)
=>\(\left(x-2\right)\left(3+\frac{x+2}{\sqrt{x^2+5}+3}-\frac{x+2}{\sqrt{x^2+12}+4}\right)=0\)
=>x-2=0
=>x=2
giải phương trình:\(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
Giải phương trình
\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+1}}+\frac{1}{\sqrt{x+1}+\sqrt{x}}=1\)
mình cần gấp giúp mình
Giải phương trình: \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
\(DK:x\ge\frac{2}{3}\)
\(\Leftrightarrow5\left(\sqrt{4x+1}-3\right)-5\left(\sqrt{3x-2}-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\frac{20\left(x-2\right)}{\sqrt{4x+1}+3}-\frac{15\left(x-2\right)}{\sqrt{3x-2}+2}-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{20}{\sqrt{4x+1}+3}-\frac{15}{\sqrt{3x-2}+2}-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\\frac{20}{\sqrt{4x+1}+3}-\frac{15}{\sqrt{3x-2}+2}-1=0\end{cases}}\)
Vi \(\frac{20}{\sqrt{4x+1}+3}-\frac{15}{\sqrt{3x-2}+2}-1< 0\left(\forall x\ge\frac{2}{3}\right)\)
Vay nghiem cua PT la \(x=2\)
Chứng minh : A = 5 + 5 mũ 2 + 5 mũ 3 + . . . + 5 mũ 9+ 5 mũ 10 chia hết cho 6 giúp mk với nha