ĐKXĐ: \(x\ge2\)
\(\dfrac{\left(\sqrt{3x-5}-\sqrt{x-2}\right)\left(\sqrt{3x-5}+\sqrt{x-2}\right)}{\sqrt{3x-5}+\sqrt{x-2}}=\dfrac{2x-3}{3}\)
\(\Leftrightarrow\dfrac{2x-3}{\sqrt{3x-5}+\sqrt{x-2}}=\dfrac{2x-3}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\Rightarrow x=\dfrac{3}{2}\left(ktm\right)\\\sqrt{3x-5}+\sqrt{x-2}=3\left(1\right)\end{matrix}\right.\)
Xét (1)
\(\Leftrightarrow\sqrt{3x-5}-2+\sqrt{x-2}-1=0\)
\(\Leftrightarrow\dfrac{3\left(x-3\right)}{\sqrt{3x-5}+2}+\dfrac{x-3}{\sqrt{x-2}+1}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{3}{\sqrt{3x-5}+2}+\dfrac{1}{\sqrt{x-2}+1}\right)=0\)
\(\Leftrightarrow x-3=0\) (do \(\dfrac{3}{\sqrt{3x-5}+2}+\dfrac{1}{\sqrt{x-2}+1}>0;\forall x\ge2\))
\(\Leftrightarrow x=3\)
Vậy pt có nghiệm duy nhất \(x=3\)