Giải:
\(\sqrt{4 x + 1} - \sqrt{3 x - 2} = \frac{x + 3}{5} , x \geq \frac{2}{3}\)
Chuyển vế và bình phương:
\(\sqrt{4 x + 1} = \frac{x + 3}{5} + \sqrt{3 x - 2}\) \(4 x + 1 = \frac{\left(\right. x + 3 \left.\right)^{2}}{25} + 2 \cdot \frac{x + 3}{5} \sqrt{3 x - 2} + \left(\right. 3 x - 2 \left.\right)\)
Đưa hạng chứa căn sang một phía:
\(x + 3 - \frac{\left(\right. x + 3 \left.\right)^{2}}{25} = 2 \cdot \frac{x + 3}{5} \sqrt{3 x - 2}\) \(\frac{\left(\right. x + 3 \left.\right) \left(\right. 22 - x \left.\right)}{25} = 2 \cdot \frac{x + 3}{5} \sqrt{3 x - 2}\)
Vì \(x \geq \frac{2}{3} \Rightarrow x \neq - 3\), chia cho \(x + 3\) và nhân quy đồng:
\(22 - x = 10 \sqrt{3 x - 2}\)
Bình phương lần nữa:
\(\left(\right.22-x\left.\right)^2=100\left(\right.3x-2\left.\right)\Longrightarrow x^2-344x+684=0\)
⇒x ∈ {2,342}
Kiểm tra với phương trình gốc:
\(x = 2 : \textrm{ }\textrm{ } \sqrt{9} - \sqrt{4} = 1 = \frac{2 + 3}{5}\) (đúng).\(x = 342 : \textrm{ }\textrm{ } 37 - 32 = 5 \neq \frac{345}{5} = 69\) (loại).Vậy nghiệm duy nhất là : \(x = 2\).
ĐKXĐ: \(x\ge\frac23\)
Ta có: \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
=>\(\sqrt{4x+1}-3+2-\sqrt{3x-2}=\frac{x+3}{5}-1\)
=>\(\frac{4x+1-9}{\sqrt{4x+1}+3}+\frac{4-3x+2}{2+\sqrt{3x-2}}=\frac{x-2}{5}\)
=>\(\frac{4x-8}{\sqrt{4x+1}+3}+\frac{-3\left(x-2\right)}{\sqrt{3x-2}+2}=\frac{x-2}{5}\)
=>\(\left(x-2\right)\left(\frac{4}{\sqrt{4x+1}+3}-\frac{3}{\sqrt{3x-2}+2}-\frac15\right)=0\)
=>x-2=0
=>x=2(nhận)