tính giá trị của biểu thức c=a^3+b^3+4a+4b-2 biết a+b=5 và a.b=4
Câu 3: Tính giá trị của biểu thức C = 5a − 4b + 7a + 8 . Biết a-b=8.
Câu 4: Tính giá trị của biểu thức D =4a + 10b - b+ 2a. Biết 2a+3b=12
Câu 5: Tính giá trị của biểu thức D=21a + 9b — 6a — 4b. Biết 3a+b=18
Câu 5:
\(D\left(2\right)=21a+9b-6a-4b\)
\(D\left(2\right)=\left(21a-6a\right)+\left(9b-4b\right)\)
\(D\left(2\right)=15a+5b\)
Mà: \(3a+b=18\Rightarrow b=18-3b\)
\(\Rightarrow D\left(2\right)=15a+5\left(18-3b\right)\)
\(D\left(2\right)=15a+90-15a\)
\(D\left(2\right)=90\)
Vậy: ...
Câu 4:
\(D\left(1\right)=4a+10b-b+2a\)
\(D\left(1\right)=\left(4a+2a\right)+\left(10b-b\right)\)
\(D\left(1\right)=6a+9b\)
Mà: \(2a+3b=12\Rightarrow a=\dfrac{12-3b}{2}\)
\(\Rightarrow D\left(1\right)=6\left(\dfrac{12-3b}{2}\right)+9b\)
\(D\left(1\right)=\dfrac{6\left(12-3b\right)}{2}+9b\)
\(D\left(1\right)=3\left(12-3b\right)+9b\)
\(D\left(1\right)=36-9b+9b\)
\(D\left(1\right)=36\)
Vậy: ...
Câu 3:
Sửa đề: \(C=5a-4b+7a-8b\)
\(C=\left(5a+7a\right)-\left(4b+8b\right)\)
\(C=12a-12b\)
\(C=12\left(a-b\right)\)
\(C=12\cdot8\)
\(C=96\)
Vậy: ...
Câu 3: Tính giá trị của biểu thức C = 5a − 4b + 7a + 8 . Biết a-b=8.
Câu 4: Tính giá trị của biểu thức D =4a + 10b - b+ 2a. Biết 2a+3b=12
Câu 5: Tính giá trị của biểu thức D=21a + 9b — 6a — 4b. Biết 3a+b=18
4:
D=6a+9b=3(2a+3b)=36
5:
D=15a+5b=5(3a+b)=90
Câu 3: Tính giá trị của biểu thức C = 5a − 4b + 7a + 8 . Biết a-b=8.
Câu 4: Tính giá trị của biểu thức D =4a + 10b - b+ 2a. Biết 2a+3b=12
Câu 5: Tính giá trị của biểu thức D=21a + 9b — 6a — 4b. Biết 3a+b=18
Câu 5:
D=21a+9b-6a-4b
=21a-6a+9b-4b
=15a+5b
=5(3a+b)
\(=5\cdot18=90\)
Câu 4: D=4a+10b-b+2a
=4a+2a+10b-b
=6a+9b
=3(2a+3b)
\(=3\cdot12=36\)
Câu 3:
C=5a-4b+7a+8
=5a+7a-4b+8
=12a-12b+8b+8
=12(a-b)+8b+8
=8(a-b)+8b+8
=8a-8b+8b+8
=8a+8
M=(2/2a-b + 6b/b^2 - 4a^2 - 4/2a+b) : (1+ 4a^2+4b^2/4a^2-b^2)
a) Rút gọn biểu thức M
b) Tính giá trị biểu thức M khi a=1/3 và b=2
Viết rõ đề bài ra đc không ạ
Bài làm:
a) đkxđ: \(2a\ne\pm b\)
Ta có: \(M=\left(\frac{2}{2a-b}+\frac{6b}{b^2-4a^2}-\frac{4}{2a+b}\right)\div\left(\frac{1+4a^2+4b^2}{4a^2-b^2}\right)\)
\(M=\left[\frac{2\left(2a+b\right)-6b-4\left(2a-b\right)}{\left(2a-b\right)\left(2a+b\right)}\right].\left(\frac{\left(2a-b\right)\left(2a+b\right)}{4a^2+4b^2+1}\right)\)
\(M=\frac{4a+2b-6b-8a+4b}{4a^2+4b^2+1}\)
\(M=\frac{-4a}{4a^2+4b^2+1}\)
b) +Nếu: \(a=\frac{1}{3}\)và \(b=2\)
Khi đó GT của M là: \(M=\frac{-4.\frac{1}{3}}{4.\frac{1}{3^2}+4.2^2+1}=-\frac{12}{157}\)
Viết rõ đề ra nhá
Cho các số thực a,b,c thỏa mãn a+b+c/2=a+b-7/4c=b+c+3/4a=a+c+4=4b . Tính giá trị của biểu thức A=20a+11b+2017c
Câu hỏi của nguyen phuong thao - Toán lớp 7 - Học toán với OnlineMath
Cho 1/a+b+c =a+4b-c/c=c+4a-b/b=b+4c-a/a
Tính giá trị biểu thức P= (2+a/b)(3+b/c)(4+c/a)
lấy 100 +1 ,99 +2 , 3+98 .VẬY MỖI CẶP SỐ ĐỀU CO TỔNG LÀ 101.........VÌ TỪ 1 ... 100 ĐỀU CÓ 50 CẶP NHƯ VẬY , TA LẤY 101x50 =5050
bn lấy 100, 99 , 98 ở đâu ra
ko đc k lung tung
Cho a và b là các số thỏa mãn: a>b>0 và a^3-a^2b+ab^2-6b^3=0
Tính giá trị biểu thức A=(a^4-4b^4)/(b^4-4a^4)
\(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)
Vì a>b>0 =>a2+ab+3b2>0 nên từ (1) ta có a=2b
Vậy biểu thức \(A=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)
Câu 1: Cho A = (sqrt(x) + 1)/(sqrt(x) - 1) B = (sqrt(x) + 2)/(sqrt(x) - 2) - 3/(sqrt(x) + 2) + 12/(4 - x) với x >= 0 x ne1; x = 4
a) Tính giá trị biểu thức A khi x = 16 .
b) Chứng minh B = (sqrt(x) - 1)/(sqrt(x) - 2)
c) Biết P =A.B Tính giá trị nguyên của x để P lớn nhất.
a: Khi x=16 thì \(A=\dfrac{4+1}{4-1}=\dfrac{5}{3}\)
b: \(P=\dfrac{x+4\sqrt{x}+4-3\sqrt{x}+6-12}{x-4}=\dfrac{x+\sqrt{x}-2}{x-4}=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)
c: \(P=A\cdot B=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}=1+\dfrac{3}{\sqrt{x}-2}\)
Để P lớn nhất thì căn x-2=1
=>căn x=3
=>x=9