tìm giá trị nhỏ nhất của x(x-6)+8
tìm giá trị nhỏ nhất của D=8-x trên x-6 (x nguyên)
Tìm giá trị nhỏ nhất của biểu thức sau:A=2+3×√x^2+1 B=√x+8 -7 Tìm giá trị lớn nhất của biểu thức sau: E=3-√x+6 F= 4/3+√2-x
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
Tìm giá trị lớn nhất của đa thức: D = -3X (X+3) -7
Tìm giá trị nhỏ nhất của đa thức: A= X^2 + 5X +8
B= x (x trừ 6)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số :
a. y=\(\sqrt{\text{3(1+ sin(x))}}\)-5
b. y= 6 sin(x+8)-5
Tìm các giá trị của X để biểu thức P=(x-1)(x+2)(x+3)(x+6)có giá trị nhỏ nhất-tìm giá trị nhỏ nhất đó
nhân cái đầu với cái cuối, hai cái giữa nhân vào nhau rồi đặt ẩn là ra
cho x>0 , y>0 , x+y≥ 6 tìm giá trị nhỏ nhất của
P = 3x + 2y + \(\dfrac{6}{x}\) + \(\dfrac{8}{y}\)
\(\Leftrightarrow2P=6x+4y+\dfrac{12}{x}+\dfrac{16}{y}\\ \Leftrightarrow2P=\left(\dfrac{12}{x}+3x\right)+\left(\dfrac{16}{y}+y\right)+3\left(x+y\right)\\ \Leftrightarrow2P\ge2\sqrt{36}+2\sqrt{16}+3\cdot6=12+8+18=38\\ \Leftrightarrow P\ge19\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}3x^2=12\\y^2=16\\x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\end{matrix}\right.\)
Tìm giá trị của x để biểu thức:
P=(x-1)(x+2)(x+3)(x+6) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó
tìm giá trị nhỏ nhất của biểu thứcP=(x+8)4+(x+6)4
Lời giải:
Đặt $x+7=t$ thì:
$P=(x+8)^4+(x+6)^4=(t+1)^4+(t-1)^4=2t^4+12t^2+2\geq 2, \forall t\in\mathbb{R}$
Do đó $P_{\min}=2$.
Giá trị này đạt tại $t=0\Leftrightarrow x+7=0$
$\Leftrightarrow x=-7$
Tìm giá trị nhỏ nhất của A= (x+8)4 + (x+6)4
khi a nhỏ nhất thì x nhó nhất
=>x=0
=>A=5392
A nhỏ nhất khi (x+8)4 và (x+6)4 nhỏ nhất
=>TH1: (x+8)4=0
=>x=-8
khi đó (x+6)4 =(-8+6)4 =16
TH2:(x+6)4=0
CM tương tự ta có (x+8)4=16
=> GTNN của A là 16
tìm x thuộc z để A=x-5/x-3 đạt giá trị nhỏ nhất tìm giá trị nhỏ nhất của a 1/x-y/6=1/3