giúp mh với (3x-2y)^2-(2x-3y)^2
Áp dụng theo hằng đẳng thức A^2-B^2 ạ !
Bài 1: Khai triển các hằng đẳng thức sau:
a, (3x-5y)2
b, (2x+7y)2
c, 4x2-49
d, (2x+3)3
e, (2x-5)3
f, (2x+3y)3
g, (3x-2y)3
Bài 2: Khai triển các hằng đẳng thức sau:
a, (a+b+c)2
b, (a-b+c)2
c, (a+b-c)2
d, (a-b-c)2
Bài 3: Điền đơn thức thích hợp vào ô trống:
a, 8x3+❏+❏+27y3=(❏+❏)3
b, 8x3+12x2.y+❏+❏=(❏+❏)3
c, x3-❏+❏-❏=(❏-2y)3
Bài 4: So sánh:
a, 2003.2005 và 20042
b, 716-1 và 8 ( 78+11) (74+1) (72+1)
Bài 5: Đưa về hiệu hai bình:
a, (2x-5) (2x+5)
b, (3x-5y) (3x+5y)
c, (3x+7y) (3x-7y)
d, (2x-1.2x+1)
Mọi người giúp mik giải gấp bài này nha. Cảm ơn nhiều ạ
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
4:
a: 2003*2005=(2004-1)(2004+1)=2004^2-1<2004^2
b: 8(7^2+1)(7^4+1)(7^8+1)
=1/6*(7-1)(7+1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^2-1)(7^2+1)(7^4+1)(7^8+1)
=1/6(7^16-1)<7^16-1
5:
a: (2x-5)(2x+5)=4x^2-25
b: (3x-5y)(3x+5y)=9x^2-25y^2
c: (3x+7y)(3x-7y)=9x^2-49y^2
d: (2x-1)(2x+1)=4x^2-1
mik chỉ biết bài 5 thôi !
Bài 1: Tính
a.(2x+3y)^2-(5x-y)^2
b(x+2/5)^2.(x-2/5)-(2x-y)^2
c.(x+1/4)^2-(2x-3)^3
Bài 2: Tính giá trị biểu thức bằng cách vận dụng hằng đẳng thức
A=x^3+3x^2+3x+6 với x=19
B=x^3-3x^2+3x với x=11
Bài 2:
a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)
b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)
1.Khai triển các hằng đẳng thức sau ^^
a) (2x^3-y^2)^3
b) (x-3y)(x^2+3xy+9y^2)
c) ( x+2y+z) (x+2y-z)
d) (2x^3y -0,5x^2)^3
e) (x^2-3).(x^4+3x^2+9)
f) (2x-1)(4x^2+2x+1)
1.Khai triển các hằng đẳng thức sau ^^
a) (2x^3-y^2)^3
b) (x-3y)(x^2+3xy+9y^2)
c) ( x+2y+z) (x+2y-z)
d) (2x^3y -0,5x^2)^3
e) (x^2-3).(x^4+3x^2+9)
f) (2x-1)(4x^2+2x+1)
a) \(\left(2x^3-y^2\right)^3\)
\(=\left(2x^3\right)^3-3\cdot\left(2x^3\right)^2\cdot y^2+3\cdot2x^3\cdot\left(y^2\right)^{^2}-\left(y^2\right)^3\)
\(=8x^9-3\cdot4x^6y^2+3\cdot2x^3y^4-y^6\)
\(=8x^9-12x^6y^2+6x^3y^4-y^6\)
b) \(\left(x-3y\right)\left(x^2+3xy+9y^2\right)\)
\(=x^3-\left(3y\right)^3\)
\(=x^3-27y^3\)
c) \(\left(x+2y+z\right)\left(x+2y-z\right)\)
\(=\left(x+2y\right)^2-z^2\)
\(=x^2+4xy+4y^2-z^2\)
d) \(\left(2x^3y-0,5x^2\right)^3\)
\(=\left(2x^3y-\dfrac{1}{2}x^2\right)^3\)
\(=8x^9y^3-6x^8y^2+\dfrac{3}{2}x^7y-\dfrac{1}{8}x^6\)
e) \(\left(x^2-3\right)\left(x^4+3x^2+9\right)\)
\(=\left(x^2-3\right)\left(4x^2+9\right)\)
\(=4x^4+9x^2-12x^2-27\)
\(=4x^4-3x^2-27\)
f) \(\left(2x-1\right)\left(4x^2+2x+1\right)\)
\(=\left(2x\right)^3-1^3\)
\(=8x^3-1\)
\(a,\left(2x^3-y^2\right)^3=8x^9-12x^6y^2+6x^3y^4-y^6\)\(b,\left(x-3y\right)\left(x^2+3xy+9y^2\right)=x^3-27y^3\)
\(c,\left(x+2y+z\right)\left(x+2y-z\right)=\left(x+2y\right)^2-z^2=x^2+4xy+4y^2-z^2\)\(d,\left(2x^3y-0,5x^2\right)^3=8x^9y^3-6x^4y^2x^2+3x^3yx^4-0,125x^6=8x^9y^3-6x^6y^2+3x^7y-0,125x^6\)
Bài 1. Áp dụng hằng đẳng thức :
a) (a + 1)(a + 2)(a^2 + 4)(a - 1)(a^2 +1)(a - 2).
b) (1- x- 2x^3+ 3x^2)(1- x + 2x^3- 3x^2).
Bài 2. Tính nhẩm theo hằng đẳng thức :
19^2 ; 28^2 ; 81^2 ; 91^2.
cho a 1
L.I.K.E
để a
làm hộ bn này bài này nào
1.Khai triển các hằng đẳng thức sau ^^
a) (2x^3-y^2)^3
b) (x-3y)(x^2+3xy+9y^2)
c) ( x+2y+z) (x+2y-z)
d) (2x^3y -0,5x^2)^3
e) (x^2-3).(x^4+3x^2+9)
f) (2x-1)(4x^2+2x+1)
giải giúp mình nha , chìu nộp bài rồi
thanks mấy bạn nhiều nha ^^`~
Gọi diện tích hình vuông là Shv.Khi đó mỗi ô vuông nhỏ có diện tích là Shv9 . Ta thấy ngay diện tích tam giác ABK bằng một nửa diện tích hình chữ nhật AKBH và bằng Shv9 .
Tương tự SAID=SDNC=SBMC=SABK=Shv9 và SIKMN=Shv9
Vậy thì SABCD=4.Shv9 +Shv9 =59 Shv
Vậy diện tích phần còn lại bằng 49 Shv
Suy ra diện tích hình vuông ABCD bằng 54 diện tích phần còn lại.
k mình nha
Thu gọn (Áp dụng các hằng đẳng thức)
A = (x - 1)2 - (x - 2) . (x + 2)
B = ( 3x + 2) . ( 9x2 - 6x + 4) - (x - 3) . (x + 3)
C = 3xy . (x - 2y) - 2x . ( x - xy)2
Giúp mình với, thanks nhiều !!!
\(A=x^2-2x+1-x^2+4=5-2x\)
\(B=27x^3+8-x^2+9=27x^3-x^2+17\)
\(C=3x^2y-6xy^2-2x\left(x^2-2x^2y+x^2y^2\right)=3x^2y-6xy^2-2x^3+4x^3y-2x^3y^2\)
Em chỉ cần nhớ hằng đẳng thức và áp dụng là biến đổi được ^^
Thu gọn về hằng đẳng thức
a)(2x+1)2+2(2x+1)+1
b)(3x-2y)2+4(3x-2y)+4
a) \(\left(2x+1\right)^2+2.\left(2x+1\right)+1=\left(2x+2\right)^2\)
b) \(\left(3x-2y\right)^2+4.\left(3x-2y\right)+4\)
\(=\left(3x-2y\right)^2+2.\left(3x-2y\right).2+2^2\)
\(=\left(3x-2y+2\right)^2\)
a) \(\left(2x+1\right)^2+2\left(2x+1\right)+1=\left(2x+2\right)^2\)
b) \(\left(3x-2y\right)^2+4\left(3x-2y\right)+4=\left(3x-2y+2\right)^2\)
a) (2x+1)2+2(2x+1)+1=[(2x+1)+1]2=(2x+2)2
b) (3x-2y)2+4(3x-2y)+4=[(3x-2y)+2]2=(3x-2y+2)2
Phân tích đa thức thành nhân tử (bằng kĩ thuật bổ sung hằng đẳng thức)
a, 2a2 + 5ab - 3b2 - 7b-2
b,2x2 - 7xy + x + 3y2 - 3y
c,6x2 - xy - 2y2 + 3x - 2y
d,4x2 - 4xy - 3y2 - 2x + 3y
e,2x2 - 3xy - 4x - 9y2 - 6y
f,3x2 - 5xy + 2y2 + 4x - 4y
a. \(2a^2+5ab-3b^2-7b-2\)
\(=\left(2a^2+6ab+2a\right)-\left(ab+3b^2+b\right)-\left(2a+6b+2\right)\)
\(=2a\left(a+3b+1\right)-b\left(a+3b+1\right)-2\left(a+3b+1\right)\)
\(=\left(2a-b-2\right)\left(a+3b+1\right)\)
b. \(2x^2-7xy+x+3y^2-3y\)
\(=\left(2x^2-xy\right)-\left(6xy-3y^2\right)+\left(x-3y\right)\)
\(=x\left(2x-y\right)-3y\left(2x-y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y\right)+\left(x-3y\right)\)
\(=\left(x-3y\right)\left(2x-y+1\right)\)
c. \(6x^2-xy-2y^2+3x-2y\)
\(=\left(6x^2+3xy\right)-\left(4xy-2y^2\right)+\left(3x-2y\right)\)
\(=3x\left(2x+y\right)-2y\left(2x+y\right)+\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(2x+y\right)+\left(3x-2y\right)\)
\(=\left(3x-2y\right)\left(2x+y+1\right)\)
Áp dụng hằng đẳng thức khai triển biểu thức sau:
a, \(\left(3x^2-2y^3\right)^2\)
b, \(\left(-2x^2-3\right)^2\)
Giải:
a) \(\left(3x^2-2y^3\right)^2\)
\(=\left(3x^2\right)^2-2.3x.2y+\left(2y^3\right)^2\)
\(=9x^4-12xy+4y^6\)
Vậy ...
b) \(\left(-2x^2-3\right)^2\)
\(=\left(-2x^2\right)^2-2.2x^2.3+3^2\)
\(=4x^4-12x^2+9\)
Vậy ...