Tìm số tự nhiên n để :
n^2009 + n^2008 + 1 là số nguyên tố
Tìm số tự nhiên n để: \(n^{2009}+n^{2008}+1\) là số nguyên tố
Chỗ nào không hiểu cò men dưới hộ nhá:vv
Timg số tự nhiên n để n2018+n2008+1 là số nguyên tố
Ta có:
\(n^{2018}+n^{2008}+1=n^2\left(n^{2016}-1\right)+n\left(n^{2007}-1\right)+\left(n^2+n+1\right)\)
\(\Rightarrow\hept{\begin{cases}n^2\left(n^{2016}-1\right)=n^2\left[\left(n^3\right)^{672}-1\right]=n^2\left(n^3-1\right)\left(n^{671}+n^{670}+...+1\right)=n^2\left(n-1\right)\left(n^2+n+1\right)\left(...\right)\\n\left(n^{2007}-1\right)=n\left[\left(n^3\right)^{669}-1\right]=n\left(n^3-1\right)\left(n^{668}+n^{667}+...+1\right)=n\left(n-1\right)\left(n^2+n+1\right)\left(...\right)\\n^2+n+1\end{cases}}\)
(Hằng đẳng thức mở rộng học ở toán 8 nâng cao)
Cộng 3 vế lại ta có:
\(n^2\left(n-1\right)\left(n^2+n+1\right)\left(...\right)+n\left(n-1\right)\left(n^2+n+1\right)\left(...\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(.....\right)\)
=> để \(n^{2018}+n^{2008}+1\text{ }\text{ là số nguyên tố thì }\orbr{\begin{cases}n^{2018}+n^{2008}+1=n^2+n+1\\n^2+n+1=1\end{cases}}\)
dễ rồi tự giải tiếp 2 trường hợp nha!!
Với a,m,n nguyên dương (\(a\ge2\))
\(a^{3m+1}+a^{3n+2}+1\)chia hết cho \(a^2+a+1\)(1)
Thật vậy
Ta có: \(a^{3m+1}+a^{3n+2}+1=a^{3m+1}-a+a^{3n+2}-a^2+a^2+a+1\)
\(=a\left(a^{3m}-1\right)+a^2\left(a^{3n}-1\right)+a^2+a+1\)
Vì \(a^{3m}-1;a^{3n}-1\)đều chia hết cho \(a^3-1\)nên chia hết cho \(a^2+a+1\)
\(\Rightarrow a^{3m+1}+a^{3n+2}+1\)chia hết cho \(a^2+a+1\)
Đặt \(A=n^{2018}+n^{2008}+1\)
+, n=1\(\Rightarrow A=3\)là số nguyên tố
+,\(n\ge2\),ta có 2018=672*3+2 ; 2008=669*3+1
Theo (1) ta có \(n^{2018}+n^{2008}+1\)chia hết cho \(n^2+n+1\)nên không là số nguyên tố
Vậy n=1 thì A là số nguyen tố
1. Tìm các số tự nhiên n để \(n^5+n^4+1\)là số nguyên tố.
2. Tìm các số tự nhiên n để \(n^8+n+1\)là số nguyên tố.
Cảm ơn các bạn!
Với \(x=0\Rightarrow n^5+n^4+1=1\left(loai\right)\)
Với \(x=1\Rightarrow n^5+n^4+1=3\left(TM\right)\)
Với \(x\ge2\) ta có:
\(n^5+n^4+1\)
\(=n^5-n^2+n^4-n+n^2+n+1\)
\(=n^2\left(n^3-1\right)+n\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n-1\right)\left(n^2+n+1\right)+n\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=A\cdot\left(n^2+n+1\right)+B\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(A+B+1\right)\) là hợp số với mọi \(n\ge2\)
Vậy \(n=1\)
Với \(n=0\Rightarrow A=n^8+n+1=1\left(KTM\right)\) vì 1 không là SNT
Với \(n=1\Rightarrow A=n^8+n+1=3\left(TM\right)\) vì 3 là SNT
Với \(n\ge2\) ta có:
\(A=n^8+n+1\)
\(=\left(n^8-n^2\right)+n^2+n+1\)
\(=n^2\left(n^6-1\right)+\left(n^2+n+1\right)\)
\(=n^2\left[\left(n^3\right)^2-1^2\right]+\left(n^2+n+1\right)\)
\(=n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)\)
\(=X\cdot\left(n^3-1\right)+\left(n^2+n+1\right)\)
\(=X\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=X'\left(x^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)\left(X'+1\right)\) là hợp số với \(n\ge2\)
Vậy \(n=1\)
1) Để n5+n4+1 là số chính phương thì \(\orbr{\begin{cases}n^2+n+1=1\\n^5+n^4+1=n^2+n+1\end{cases}}\)
TH1: \(n^2+n+1=1\Leftrightarrow n\left(n+1\right)=0\Leftrightarrow n=0\left(n\inℕ\right)\)
Thử lại sai
TH2: \(n^2+n+1=n^5+n^4+1\)
\(\Leftrightarrow n^5-n^2+n^4-n=0\)
\(\Leftrightarrow n\left(n^3-1\right)\left(n+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n=1\\n=0\end{cases}}\)
Thử lại thấy n=1 thỏa mãn
Vậy n=1
Bài 2 Tìm số tự nhiên k để 31k là số nguyên số
Tìm số tự nhiên n để 17 n là số nguyên tố
Bài 2
Xét k=0 thì 31k=0(loại)
Xét k=1 thì 31k=31(chọn)
Xét k>1 thì 31k có 2 ước trở lên(loại)
Vậy k=1
1. Tìm số nguyên dương n để P nguyên tố
P= n( n +1 )/2
2. Tìm số nguyên tố P để 2P+1 là lập phương của một số tự nhiên
3. Tìm n thuộc số tự nhiên khác 0 đển n^4 + 4 là số nguyên tố
Em tham khảo!
Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath
Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath
1a) Tìm các số nguyên tố p để 2p+1 là lập phương của 1 số tự nhiên
b)Tìm các số nguyên tố p đẻ 13p+1 là lập phương của 1 số tự nhiên
2) Cho p là số nguyên tố lớn hơn 2. Chứng minh rằng: có vô số số tự nhiên n thỏa mãn n.2^n-1 chia hết cho p
3) Tìm n thuộc N* để: a) n^4+4 là số nguyên tố
b)n^2003+n^2002+1 là số nguyên tố
1.Tìm số nguyên n sao cho n^2+3 là số chính phương
2.Tìm số tự nhiên n để n^2+3n+2 là số nguyên tố
3.Tìm số nguyên tố p để p+1 là số chính phương
Tìm số tự nhiên n để \(n^{2003}+n^{2002}+1\) là số nguyên tố.
Tìm tất cả các số tự nhiên n để n2+16n là số nguyên tố
Tìm tất cả các số tự nhiên a để19a-8a là số nguyên tố
Tìm tất cả các số tự nhiên để 3n+60 là số nguyên tố