Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tam giác
Xem chi tiết
Hải Linh Vũ
Xem chi tiết
nguyen cuc
Xem chi tiết
Hồ Thị Trâm Anh
Xem chi tiết
hoàng tử quạ
15 tháng 4 2020 lúc 20:54

kb minh ko ae

Khách vãng lai đã xóa
Chu Anh Thái
Xem chi tiết
Akai Haruma
14 tháng 7 2023 lúc 23:11

Đề lỗi ảnh hiển thị hết rồi. Bạn coi lại.

tran tien dat
Xem chi tiết
Trịnh Thị Nhung
8 tháng 7 2017 lúc 11:06

Ta có a + b = c + d => a = c + d - b

thay vào ab + 1 = cd

=> ( c + d - b ) . b + 1 = cd

<=> cb + db - cd + 1 - b2 = 0

<=> b ( c - b ) - d ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) = -1

Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :

1 : b - d = -1 và c - b = 1

<=> d = b + 1 và c = b + 1

=> c = d 

2 : b - d = 1 và c - b = -1

<=> d = b - 1 và c = b - 1

=> c = d

Vậy từ 2 trường hợp trên ta có c = d

Băng băng
8 tháng 7 2017 lúc 11:13

Ta có a + b = c + d => a = c + d - b

thay vào ab + 1 = cd

=> ( c + d - b ) . b + 1 = cd

<=> cb + db - cd + 1 - b2 = 0

<=> b ( c - b ) - d ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) + 1 = 0

<=> ( b - d ) ( c - b ) = -1

Vì a, b, c, d là số nguyên nên ( b - d ) và ( c - b ) nguyên mà ( b - d ) ( c - b ) = -1 nên có 2 trường hợp :

1 : b - d = -1 và c - b = 1

<=> d = b + 1 và c = b + 1

=> c = d 

2 : b - d = 1 và c - b = -1

<=> d = b - 1 và c = b - 1

=> c = d

Vậy từ 2 trường hợp trên ta có c = d

Hồ Thị Trâm Anh
Xem chi tiết
Nguyễn Hữu Phúc
Xem chi tiết
Đoàn Đức Hà
13 tháng 5 2022 lúc 11:07

\(3x^2y^3-A-5x^3y^2+B=8x^2y^3-4x^3y^2\)

\(\Leftrightarrow-A+B=5x^2y^3+x^3y^2\)

\(-6x^2y^3+C-3x^3y^2-D=2x^2y^3-7x^3y^2\)

\(\Leftrightarrow C-D=8x^2y^3-4x^3y^2\)

Do \(A\) và \(C\) đồng dạng nên \(A=-5x^2y^3,C=8x^2y^3\) suy ra \(B=x^3y^2,D=4x^3y^2\) hoặc \(A=-x^3y^2,C=-4x^3y^2\) suy ra \(B=5x^2y^3,D=-8x^2y^3\).

Lương Đại
Xem chi tiết