Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Quốc Việt
Xem chi tiết
Mr Lazy
30 tháng 6 2015 lúc 18:39

\(\text{1)}\)

\(\text{Thay }x=-2,\text{ ta có: }f\left(-2\right)-5f\left(-2\right)=\left(-2\right)^2\Rightarrow f\left(-2\right)=-1\)

\(\Rightarrow f\left(x\right)=x^2+5f\left(-2\right)=x^2-5\)

\(f\left(3\right)=3^2-5\)

\(\text{2)}\)

\(\text{Thay }x=1,\text{ ta có: }f\left(1\right)+f\left(1\right)+f\left(1\right)=6\Rightarrow f\left(1\right)=2\)

\(\text{Thay }x=-1,\text{ ta có: }f\left(-1\right)+f\left(-1\right)+2=6\Rightarrow f\left(-1\right)=2\)

\(\text{3)}\)

\(\text{Thay }x=2,\text{ ta có: }f\left(2\right)+3f\left(\frac{1}{2}\right)=2^2\text{ (1)}\)

\(\text{Thay }x=\frac{1}{2},\text{ ta có: }f\left(\frac{1}{2}\right)+3f\left(2\right)=\left(\frac{1}{2}\right)^2\text{ (2)}\)

\(\text{(1) - 3}\times\text{(2) }\Rightarrow f\left(2\right)+3f\left(\frac{1}{2}\right)-3f\left(\frac{1}{2}\right)-9f\left(2\right)=4-\frac{1}{4}\)

\(\Rightarrow-8f\left(2\right)=\frac{15}{4}\Rightarrow f\left(2\right)=-\frac{15}{32}\)

Phạm Tuấn Kiệt
17 tháng 4 2016 lúc 20:49

sai 1 chút chỗ cÂU 3

nhân vs 3 thì phải là 1/12

Phạm Thành Hưng
5 tháng 12 2017 lúc 18:57

thay x bằng ? mik cũng ko bit làm lên vào đây tham khảo hihihihi

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
11 tháng 9 2023 lúc 14:38

\(f\left( { - 3} \right) = {\left( { - 3} \right)^2} + 4 = 9 + 4 = 13\);

\(f\left( { - 2} \right) = {\left( { - 2} \right)^2} + 4 = 4 + 4 = 8\);

\(f\left( { - 1} \right) = {\left( { - 1} \right)^2} + 4 = 1 + 4 = 5\);

\(f\left( 0 \right) = {0^2} + 4 = 0 + 4 = 4\);

\(f\left( 1 \right) = {1^2} + 4 = 1 + 4 = 5\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
12 tháng 9 2023 lúc 23:43

\(f\left( { - 3} \right) =  - {\left( { - 3} \right)^2} + 1 =  - 9 + 1 =  - 8\);

\(f\left( { - 2} \right) =  - {\left( { - 2} \right)^2} + 1 =  - 4 + 1 =  - 3\);

\(f\left( { - 1} \right) =  - {\left( { - 1} \right)^2} + 1 =  - 1 + 1 = 0\);

\(f\left( 0 \right) =  - {0^2} + 1 = 0 + 1 = 1\);

\(f\left( 1 \right) =  - {1^2} + 1 =  - 1 + 1 = 0\);

Lê Ngọc Linh
Xem chi tiết
Minh Anh
30 tháng 8 2016 lúc 16:07

\(y=f\left(x\right)=\left|\frac{3}{2}x-\frac{5}{2}\right|\)

\(\Rightarrow f\left(0\right)=\left|\frac{3}{2}.0-\frac{5}{2}\right|=\left|0-\frac{5}{2}\right|=\left|-\frac{5}{2}\right|=\frac{5}{2}\)

Vậy: \(f\left(0\right)=\frac{5}{2}\)

๖²⁴ʱƘ-ƔℌŤ༉
Xem chi tiết
shitbo
4 tháng 9 2019 lúc 10:01

\(f\left(x\right)=\frac{x^2+2x+1-x^2}{x^2\left(x+1\right)^2}=\frac{\left(x+1\right)^2-x^2}{x^2\left(x+1\right)^2}=\frac{1}{x^2}-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow f\left(1\right)+f\left(2\right)+....+f\left(x\right)=1-\frac{1}{2^2}+\frac{1}{2^2}-....-\frac{1}{\left(x+1\right)^2}\)

\(\Rightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)

\(\Leftrightarrow\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-19+x=\frac{2y\left(x+1\right)^3-1}{\left(x+1\right)^2}-20+\left(x+1\right)=\frac{x\left(x+2\right)}{\left(x+1\right)^2}\)

Dat:\(x+1=a\Rightarrow\frac{\left(2y+1\right)a^3-20a^2-1}{a^2}=\frac{a^2-1}{a^2}\Leftrightarrow\left(2y+1\right)a^3-20a^2-1=a^2-1\)

\(\Leftrightarrow\left(2y+1\right)a^3-20a^2=a^2\Leftrightarrow\left(2ay+a\right)-20=1\left(coi:x=-1cophailanghiemko\right)\)

\(\Leftrightarrow2ay+a=21\Leftrightarrow a\left(2y+1\right)=21\Leftrightarrow\left(x+1\right)\left(2y+1\right)=21\)

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:18

• Xét hàm số \(f\left( x \right) = 2x - \sin x\) có tập xác định \(D = \mathbb{R}\).

Vậy hàm số \(f\left( x \right)\) liên tục trên \(\mathbb{R}\).

• Xét hàm số \(g\left( x \right) = \sqrt {x - 1} \)

ĐKXĐ: \(x - 1 \ge 0 \Leftrightarrow x \ge 1\)

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) có tập xác định \(D = \left[ {1; + \infty } \right)\).

Hàm số \(g\left( x \right) = \sqrt {x - 1} \) là hàm căn thức nên liên tục trên khoảng \(\left( {1; + \infty } \right)\).

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} g\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \sqrt {x - 1}  = \sqrt {1 - 1}  = 0 = g\left( 1 \right)\)

Do đó hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục tại điểm \({x_0} = 1\).

Vậy hàm số \(g\left( x \right) = \sqrt {x - 1} \) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = f\left( x \right).g\left( x \right) = \left( {2x - \sin x} \right)\sqrt {x - 1} \)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = f\left( x \right).g\left( x \right)\) liên tục trên nửa khoảng \(\left[ {1; + \infty } \right)\).

• Xét hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}} = \frac{{2x - \sin x}}{{\sqrt {x - 1} }}\)

Do hàm số \(y = f\left( x \right)\) và \(y = g\left( x \right)\) đều liên tục tại mọi điểm \({x_0} \in \left[ {1; + \infty } \right)\) nên hàm số \(y = \frac{{f\left( x \right)}}{{g\left( x \right)}}\) liên tục trên khoảng \(\left( {1; + \infty } \right)\).

Hoàng Phúc
Xem chi tiết
Cô bé mùa đông
Xem chi tiết
Trần Hoàng Yến
Xem chi tiết