Cho \(f\left(x\right)=\left(x^2+x+1\right)^2+1\).Gọi n là số nguyên dương nhỏ nhất mà \(\frac{f\left(2\right).f\left(4\right)......f\left(2n\right)}{f\left(1\right).f\left(3\right).....f\left(2n-1\right)}>2^{2013}\)
Tìm chữ số tận cùng của n
Cho \(f\left(x\right)=\frac{x^3}{1-3x+3x^2}.\) Tính \(A=f\left(\frac{1}{2020}\right)+f\left(\frac{2}{2020}\right)+...+f\left(\frac{2018}{2020}\right)+f\left(\frac{2019}{2020}\right).\)
Cho \(f\left(x\right)=\frac{x^3}{1-3x+3x^2}.\) Tính \(A=f\left(\frac{1}{2020}\right)+f\left(\frac{2}{2020}\right)+...+f\left(\frac{2018}{2020}\right)+f\left(\frac{2019}{2020}\right).\)
Cho \(f\left(x\right)=\frac{x^3}{1-3x+3x^2}\)hãy tính giá trị biểu thức
\(A=f\left(\frac{1}{2012}\right)+f\left(\frac{2}{2012}\right)+...+f\left(\frac{2010}{2012}\right)+f\left(\frac{2011}{2012}\right)\)
Cho \(f\left(x\right)=\frac{x^3}{1-3x+3x^2}\)
Tính \(f\left(\frac{1}{2019}\right)+f\left(\frac{2}{2019}\right)+...+f\left(\frac{2018}{2019}\right)\)
Cho hàm số y = f(x) xác định với mọi số thực x khác 0 và thỏa mãn \(f\left(x\right)+3.f\left(\frac{1}{2}\right)=x^2\). Tính f(2)
Tìm hàm f: \(R\rightarrow R\) thỏa mãn điều kiện
1. \(f\left(x^2+f\left(y\right)\right)=y+x.f\left(x\right),\forall x,y\in R\)
2. \(f\left(\left(x+1\right).f\left(y\right)\right)=f\left(y\right)+y.f\left(x\right),\forall x,y\in R\)
3. \(f\left(x^3+f\left(y\right)\right)=x^2f\left(x\right)+y,\forall x,y\in R\)
4. \(\hept{\begin{cases}f\left(x+y\right)=f\left(x\right)+f\left(y\right)\\f\left(xy\right)=f\left(x\right).f\left(y\right)\end{cases}},\forall x,y\in R\)
@Lê Minh Đức
Câu 1: Cho hàm số y= \(f\left(x\right)=x^2+2x-1\)
a. Tính các giá trị \(f\left(-1\right),\) \(f\left(0\right)\) và \(f\left(1\right)\)
b. Tìm toạ độ các điểm có tung độ bằng -1 trên đồ thị hàm số
Cho hàm số y =f(x)=ax+b. Biết \(f\left(3\right)\le f\left(1\right)\le f\left(2\right)\)và f(4)=2. Chứng minh rằng: a=0 và f(0)=2