Chứng minh rằng 4+3=12
1) \(5+5^2+5^3+.....+5^{12}=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{11}+5^{12}\right)\)
\(=30.1+5^2.30+.....+5^{10}.30=30.\left(1+5^2+....+5^{10}\right)\)
Vậy chia hết cho 30
\(5+5^2+5^3+....+5^{12}=\left(5+5^2+5^3\right)+.....+\left(5^{10}+5^{11}+5^{12}\right)\)
\(=5.31+5^4.31+....+5^{10}.31=31.\left(5+5^4+....+5^{10}\right)\)
Vậy chia hết cho 31
Chứng minh rằng: 4 + 3 = 12
Bài làm :
Ta thấy : 4 + 3 = Tứ + Tam
Tứ + Tam = Tám + Tư
Mà Tám + Tư = 8 + 4 = 12
=> 4 + 3 = 12
Mình làm đúng rùi đó !k mình nha!
cho A=1/11+1/12+.........+1/70
a) chứng minh rằng A>4/3
b)chứng minh rằng A<5/2
a) \(A=\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{60}\right)+...+\frac{1}{70}\)
Nhận xét:
\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\ge\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
\(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}\ge\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)
\(\frac{1}{31}+...+\frac{1}{60}\ge\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{30}{60}=\frac{1}{2}\)
\(A\ge\frac{1}{2}+\frac{1}{3}+\frac{1}{2}+\frac{1}{61}...+\frac{1}{70}\ge\frac{1}{2}+\frac{1}{3}+\frac{1}{2}=\frac{4}{3}\)
Sorry ,tất cả dấu lớn hơn hoặc bằng đổi thành dấu > nhé
Cho A = 1/11 + 1/12 + 1/13 + ... + 1/70
a, Chứng minh rằng : A > 4/3
b, Chứng minh rằng : A < 5/2
https://olm.vn/hoi-dap/detail/54833154236.html
Câu 1
A = (x+2017).(x+2018).Chứng tỏ rằng A luôn chia hết cho2
Câu 2
Cho C=3^10+3^11+3^12+...+3^16+3^17. Chứng minh rằng C chia hết cho 40
Câu 3
D= 4^25+4^26+4^27+...=4^29+4^30. Chứng minh rằng D chia hết cho 273
Câu 2:
\(C=3^{10}+3^{11}+3^{12}+...+3^{17}.\)
\(C=\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+3^{15}+3^{16}+3^{17}\right).\)
\(C=3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right).\)
\(C=3^{10}\left(1+3+9+27\right)+3^{14}\left(1+3+9+27\right).\)
\(C=3^{10}.40+3^{14}.40.\)
\(C=\left(3^{10}+3^{14}\right).40⋮40\left(đpcm\right).\)
\(C=3^{10}+3^{11}+..+3^{17}\\ =\left(3^{10}+3^{11}+3^{12}+3^{13}\right)+\left(3^{14}+..+3^{17}\right)\\ =3^{10}\left(1+3+3^2+3^3\right)+3^{14}\left(1+3+3^2+3^3\right)\\ =40\left(3^{10}+3^{14}\right)⋮40\)
1)
+Nếu x lẻ thì x+2017 là chẵn \(⋮2\)
+Nếu x là chẵn thì x+2018 cũng là chãn \(⋮2\)
\(\Rightarrow dpcm\)
B = 3 + 3^2 + 3^3 + 3^4 +...+ 3^20
chứng minh rằng B là bội của 12
Chứng minh rằng: 4/3< A=1/11+1/12+1/70 <2,5
cho a=2+2^2+^3+2^4+......+2^12 .chứng minh rằng A chia hết cho 7
Chỉnh đề:
Ta có:
\(A=2+2^2+2^3+2^4+...2^{12}\)
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{10}+2^{11}+2^{12}\right)\)
\(A=14+2^3.\left(2+2^2+2^3\right)+...+2^9.\left(2+2^2+2^3\right)\)
\(A=14+2^3.14+...+2^9.14\)
\(A=14.\left(1+2^3+...+2^9\right)\)
Vì \(14⋮7\) nên \(14.\left(1+2^3+...2^9\right)⋮7\)
Vậy \(A⋮7\)
Cho A=1/1*4+1/3*8+1/5*12+...+1/99*200. Chứng minh rằng :A<5/12.