Chỉnh đề:
Ta có:
\(A=2+2^2+2^3+2^4+...2^{12}\)
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{10}+2^{11}+2^{12}\right)\)
\(A=14+2^3.\left(2+2^2+2^3\right)+...+2^9.\left(2+2^2+2^3\right)\)
\(A=14+2^3.14+...+2^9.14\)
\(A=14.\left(1+2^3+...+2^9\right)\)
Vì \(14⋮7\) nên \(14.\left(1+2^3+...2^9\right)⋮7\)
Vậy \(A⋮7\)