giúp mình vẽ nốt hình và làm câu b ạ
Giúp mình vẽ hình và làm câu b vs ạ
môn âm nhạc 7 ạ mong mn giúp!
câu 1.So sánh nhịp 2/4 và 3/4
câu 2.Vẽ sơ đồ hình nốt
Giống nhau:
-Đều có ô nhịp , phách, các nốt nhạc, giá trị của mỗi phách bằng nhau (1 phách)
Khác nhau:
-Nhịp 3/4 có 3 phách trong một ô nhịp
-Nhịp 3/4 là nhịp lẻ
-nhịp 2/4 có 2 phách trong một ô nhịp.
-nhịp 2/4 là nhịp chẵn.
vẽ giúp mình hình và câu c,b với ạ, mình cảm ơn
Ai giúp mình phần 2 nhỏ bài tìm gtri nguyên n với câu 3 bài hình đc ko ạ(kèm vẽ hình) nếu cần thiết mn làm giúp e câu 5 ạ ko thì thôi ạ. Mình cảm ơn nhiều
Bài 2:
Ta có: \(3n^3+10n^2-5⋮3n+1\)
\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)
hay \(n\in\left\{0;-1;1\right\}\)
Làm giúp mình câu a,b và vẽ hình
a,b:
góc ACB=góc ADB=1/2*180=90 độ
=>CB vuông góc AM, BD vuông góc AN
ΔABN vuông tại B có BD vuông góc AN
nên AD*AN=AB^2
ΔABM vuông tại B có BC vuông góc AM
nên AC*AM=AB^2=AD*AN
=>AC/AN=AD/AM
=>ΔACD đồng dạng với ΔANM
=>góc ACD=góc ANM
=>góc DCM+goc DNM=180 độ
=>DNMC nội tiếp
Vẽ hình và làm a,b,c,d giúp mình nha cảm ơn ạ
a: Xét ΔBAE vuông tại A và ΔBIE vuông tại I có
BE chung
\(\widehat{ABE}=\widehat{IBE}\)
Do đó: ΔBAE=ΔBIE
Suy ra: BA=BI
hay ΔBIA cân tại B
b: Ta có: ΔBAE=ΔBIE
nên EA=EI
hay E nằm trên đường trung trực của AI(1)
Ta có: BA=BI
nên B nằm trên đường trung trực của AI(2)
Từ (1) và (2) suy ra BE là đường trung trực của AI
hay BE\(\perp\)AI
c: Xét ΔAEK vuông tại A và ΔIEC vuông tại I có
EA=EI
\(\widehat{AEK}=\widehat{IEC}\)
Do đó:ΔAEK=ΔIEC
Suy ra: AK=IC
Ta có: BA+AK=BK
BI+IC=BC
mà BA=BI
và AK=IC
nên BK=BC
hay ΔBKC cân tại B
d: Xét ΔBKC có BA/BK=BI/BC
nên AI//KC
Giúp em với ạ vẽ hình nữa làm mình câu a) cũng được ạ em cảm ơn nhìu ::)>>33
a.
Ta có \(BD||AC\) (cùng vuông góc AB)
Áp dụng định lý Talet trong tam giác ACE: \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)
b.
Ta có \(IK||BD||AC\) \(\Rightarrow EI||AC\)
Áp dụng Talet: \(\dfrac{DC}{ED}=\dfrac{DA}{ID}\Rightarrow\dfrac{DC}{DC+ED}=\dfrac{DA}{DA+ID}\Rightarrow\dfrac{DC}{CE}=\dfrac{DA}{AI}\) (1)
Do \(BD||EK\), áp dụng Talet trong tam giác CEK: \(\dfrac{BD}{EK}=\dfrac{CD}{CE}\) (2)
Do \(BD||EI\), áp dụng Talet trong tam giác AEI: \(\dfrac{BD}{EI}=\dfrac{AD}{AI}\) (3)
Từ(1);(2);(3) \(\Rightarrow\dfrac{BD}{EK}=\dfrac{BD}{EI}\Rightarrow EK=EI\)
Giúp e vẽ hình và làm câu 34 đi ạ
Gọi E là giao điểm HK và AC
\(\Rightarrow E\) là trung điểm OC \(\Rightarrow OE=\dfrac{1}{2}OC=\dfrac{1}{2}OA\)
\(\Rightarrow d\left(E;\left(SBD\right)\right)=\dfrac{1}{2}d\left(A;\left(SBD\right)\right)\)
HK là đường trung bình tam giác BCD \(\Rightarrow HK||BD\)
\(\Rightarrow d\left(HK;SD\right)=d\left(HK;\left(SBD\right)\right)=d\left(E;\left(SBD\right)\right)=\dfrac{1}{2}d\left(A;\left(SBD\right)\right)\)
Từ A kẻ \(AF\perp SO\Rightarrow AF\perp\left(SBD\right)\Rightarrow AF=d\left(A;\left(SBD\right)\right)\)
\(AO=\dfrac{1}{2}AC=\dfrac{a\sqrt{2}}{2}\)
Hệ thức lượng:
\(AF=\dfrac{SA.AO}{\sqrt{SA^2+AO^2}}=\dfrac{2a}{3}\)
\(\Rightarrow d\left(HK;SD\right)=\dfrac{1}{2}AF=\dfrac{a}{3}\)
Mọi người giải và vẽ hình giúp mình với ạ làm c11 thôi ạ
Bài 11:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và MN=AC/2(1)
Xét ΔCDA có
P là trung điểm của CD
Q là trung điểm của DA
Do đó: PQ là đường trung bình của ΔCDA
Suy ra: PQ//AC và PQ=AC/2(2)
Từ (1) và (2) suy raMN//PQ và MN=PQ
hay MNPQ là hình bình hành
giúp mình với ạ, vẽ hình, làm đầy đủ và chính xác 100% ạ