cho xyz=2012. CmR \(\frac{2012x}{xy+2012x+2012}\)+\(\frac{y}{yz+y+2012}\)+\(\frac{z}{zx+y+2012}\)=1
giả sử x,y,z thỏa mãn x.y.z=2012
cmr:\(\frac{2012x}{xy+2012x+2012}\)\(+\frac{y}{yz+2012x+2012}\)\(+\frac{z}{xz+z+1}\)\(=1\)
bài này chị bt làm rồi nhưng làm hơi dài
chị bận tối chị viết cho nha
hihihhihhi
Cho x, y, z thỏa mãn : \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}\) . Chứng minh rằng \(\frac{2012z-2013y}{2011}=\frac{2013x-2011z}{2012}=\frac{2011y-2012x}{2013}\)
Đặt \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}=k\)
\(\Rightarrow\hept{\begin{cases}x=2011k\\y=2012k\\z=2013k\end{cases}}\)
+) Ta có : \(\frac{2012z-2013y}{2011}=\frac{2012.2013k-2013.2012k}{2011}=0\)
\(\frac{2013x-2011z}{2012}=\frac{2013.2011k-2011.2013k}{2012}=0\)
\(\frac{2011y-2012x}{2013}=\frac{2011.2012k-2012.2011k}{2013}=0\)
Do đó : \(\frac{2012z-2013y}{2011}=\frac{2013x-2011z}{2012}=\frac{2011y-2012x}{2013}\left(=0\right)\) ( đpcm )
Đặt \(\frac{x}{2011}=\frac{y}{2012}=\frac{z}{2013}=k\Rightarrow\hept{\begin{cases}x=2011k\\y=2012k\\z=2013k\end{cases}}\)
\(\frac{2012z-2013y}{2011}=\frac{2012\cdot2013k-2013k\cdot2012}{2011}=\frac{0}{2011}=0\)(1)
\(\frac{2013x-2011z}{2012}=\frac{2013\cdot2011k-2011\cdot2013k}{2012}=\frac{0}{2012}=0\)(2)
\(\frac{2011y-2012x}{2013}=\frac{2011\cdot2012k-2012\cdot2011k}{2013}=\frac{0}{2013}=0\)(3)
Từ (1) , (2) và (3) => đpcm
Cho x;y;z là các số dương thỏa mãn \(x+y+z\le3\)
\(CMR:\frac{1}{x^2+y^2+z^2}+\frac{2012}{xy+yz+zx}\ge671\)
bài này esay thôi:
ta có \(x+y+z\le3\Leftrightarrow\left(x+y+z\right)^2\le9.\)
Ta lại có:\(\left(x+y+z\right)^2\ge3\left(xy+zx+zy\right)\)
\(\Leftrightarrow9\ge3\left(xy+yz+xz\right)\Leftrightarrow3\ge xy+xz+yz\)
Ta có:
\(VT=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+zx+zy}+\frac{1}{xy+yz+xz}+\frac{2010}{xy+xz+yz}\)
\(\ge\frac{9}{\left(x+y+z\right)^2}+\frac{2010}{xy+yz+xz}\)\(\ge\frac{9}{3^2}+\frac{2010}{3}=1+670=671\left(đpcm\right).\)
Dấu = xay ra khi \(x=y=z=1\)
Cho mình hỏi lầu trên cái, esay là gì thế? Bạn đánh nhầm từ easy phải không?
Cho đa thức
f(x)=x^6 - 2012x^5 + 2012x^4 -2012x^3 + 2012x^2 - 2012x + 2017f(x)=x6−2012x5+2012x4−2012x3+2012x2−2012x+2017.
f(2011) =
ủ4irir4101orerfd
Tìm giá trị nguyên dương x,y,z biết :
\(\frac{xyz+x+z}{yz+1}=\frac{2012}{212}\)
Có \(\frac{xyz+x+z}{yz+1}=\frac{2012}{212}\) <=> \(\frac{x\left(yz+1\right)+z}{yz+1}=\frac{2012}{212}\)
<=> \(x+\frac{z}{yz+1}=\frac{503}{53}\)
<=> \(x+\frac{1}{\frac{yz+1}{z}}=\frac{503}{53}\)
<=> \(x+\frac{1}{y+\frac{1}{z}}=9+\frac{1}{2+\frac{1}{26}}\)
Vì PT trên chỉ có duy nhất và x,y,z nguyên dương
=> \(\left\{{}\begin{matrix}x=9\\y=2\\x=26\end{matrix}\right.\)
Vậy (x,y,z) \(\in\left\{\left(9,2,26\right)\right\}\)
x^10-2012x^9+2012^8-2012^7+2017^6-...-2012x+2012x tai x =2011
Tìm \(x\in Z\)để \(A=\frac{2013x+1}{2012x-2012}\) đạt GTLN.
Cho P(x)= x40-2012x39+2012x38+……..+2012x2-2012x+2012
Tính P(2011)
Tìm các số x;y:z : x2 +y2+z2 = xy+yz+zx và x2012 ++y2012 +z2012 = 32013
Ta có :\(x^2+y^2+z^2=xy+yz+xz\Rightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
Phối hợp lại ta được nhứng hằng đẳng thức cộng lại được :
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
Mà các đa thức mũ 2 đều lớn hơn hoặc bằng 0 nên ta được :
\(x=y=z\)
Thế vào công thức của đề bài ta được :
\(x^{2012}+y^{2012}+z^{2012}=3x^{2012}=3^{2013}\Rightarrow x^{2012}=3^{2012}\Rightarrow x=3\)
Hay x =y =z = 3