Ta có :\(x^2+y^2+z^2=xy+yz+xz\Rightarrow2x^2+2y^2+2z^2=2xy+2yz+2xz\)
\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz=0\)
Phối hợp lại ta được nhứng hằng đẳng thức cộng lại được :
\(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
Mà các đa thức mũ 2 đều lớn hơn hoặc bằng 0 nên ta được :
\(x=y=z\)
Thế vào công thức của đề bài ta được :
\(x^{2012}+y^{2012}+z^{2012}=3x^{2012}=3^{2013}\Rightarrow x^{2012}=3^{2012}\Rightarrow x=3\)
Hay x =y =z = 3