Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Ngô
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 19:49

a: \(AH=4\sqrt{3}\left(cm\right)\)

HC=12cm

BC=16cm

addfx
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2023 lúc 20:32

a: Xét ΔABH vuông tại H có \(AB^2=AH^2+HB^2\)

=>\(HB^2=6^2-4,8^2=12.96\)

=>\(HB=\sqrt{12,96}=3,6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BA^2=BH\cdot BC\)

=>\(BC=\dfrac{6^2}{3,6}=10\left(cm\right)\)

Xét ΔABC vuông tại A có \(AB^2+AC^2=BC^2\)

=>\(AC^2+6^2=10^2\)

=>\(AC^2=100-36=64\)

=>\(AC=\sqrt{64}=8\left(cm\right)\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

b: Xét ΔHAD có \(\widehat{AHD}=90^0\); HA=HD

nên ΔAHD vuông cân tại H

Xét tứ giác IDBA có \(\widehat{IDB}+\widehat{IAB}=90^0+90^0=180^0\)

nên IDBA là tứ giác nội tiếp

=>\(\widehat{AIB}=\widehat{ADB}=45^0\)

Xét ΔAIB có \(\widehat{BAI}=90^0;\widehat{AIB}=45^0\)

nên ΔAIB vuông cân tại A

=>AI=AB

đoàn thị mai thương
Xem chi tiết
hoa học trò
3 tháng 12 2018 lúc 21:59

theo định lý pitago ta có: BC^2=AB^2+AC^2 =>BC^2=9^2+12^2=225 =>BC=15 cm

áp dụng hệ thức lượng vào tm giác vuông ABC ta có: AB^2=BH*BC=>BH=AB^2/BC=9^2/15=5,4

lại có: HC+HB=BC =>HC=BC-BH=15-5,4=9,6 cm

tlut2509
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 7 2023 lúc 13:46

AH=căn 12^2-9^2=3*căn 7(cm)

CH=AH^2/HB=9*7/9=7(cm)

BC=9+7=16cm

AC=căn CH*BC=4*căn 7(cm)

@DanHee
23 tháng 7 2023 lúc 13:53

Xét tam giác \(ABH\) vuông tại H có

\(AH^2+HB^2=AB^2\left(Pytago\right)\)

\(\Leftrightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)

Xét tam giác ABC vuông tại A

\(AB^2=HB.BC\\ \Rightarrow BC=\dfrac{AB^2}{HB}=\dfrac{15^2}{9}=25\left(cm\right)\\ HB+HC=BC\\ \Rightarrow HC=BC-BH=25-9=16\left(cm\right)\\ AB.AC=AH.BC\\ \Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{12.25}{15}=20\left(cm\right)\)

HT.Phong (9A5)
23 tháng 7 2023 lúc 13:59

Ta có tam giác ABC vuông tại A và đường cao AH nên:

Áp dụng tính chất cạnh góc vuông và hình chiếu:

\(AB^2=BC\cdot HB\Rightarrow BC=\dfrac{AB^2}{HB}=\dfrac{15^2}{9}=25\left(cm\right)\)

Ta có tam giác HAB vuông tại H áp dụng tính định lý Py-ta-go:

\(AH=\sqrt{AB^2-HB^2}=\sqrt{15^2-9^2}=12\left(cm\right)\)

Mà: \(HB+HC=BC\Rightarrow HC=BC-HB=25-9=16\left(cm\right)\)

Lại áp dụng tính chất hình chiếu và cạnh góc vuông ta có:

\(AC=\sqrt{25\cdot16}=20\left(cm\right)\)

Linh Linh
Xem chi tiết
ngoclanne
16 tháng 6 2021 lúc 12:57

undefinedundefinedundefined

nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 9 2021 lúc 12:37

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH^2+16HB-225=0\)

hay BH=9(cm)

\(\Leftrightarrow AC=20cm\)

hay AH=12cm

nguyen ngoc son
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 9 2021 lúc 12:29

Ta có: \(AB^2=HB\cdot HC\)

\(\Leftrightarrow HB\left(HB+16\right)=225\)

\(\Leftrightarrow HB^2+16HB-225=0\)

\(\Leftrightarrow HB=9\left(cm\right)\)

\(\Leftrightarrow AC=\sqrt{HC\cdot BC}=\sqrt{16\cdot25}=20\left(cm\right)\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Cô Nàng Họ Lê
Xem chi tiết
Thư Võ Vân
Xem chi tiết
Bexiu
22 tháng 9 2017 lúc 19:43

bài làm tương tự :

dùng Pitago đảo thử từng cặp 1 

ta có: 

(b−c)2+h2

=b2+c2−2bc+h2(b−c)2+h2

=b2+c2−2bc+h2(1)

vì tam giác ABC vuông ở A có đường cao AH nên

 a2=b2+c2a2=b2+c2AB.AB

=AH.BC=2SAB.AB

=AH.BC

=2Shayb.c

=a.hb.c=a.h

⇒b2+c2−2bc+h2

=a2−2ah+h2

=(a−h)2

⇒b2+c2−2bc+h2

=a2−2ah+h2

=(a−h)2