Cho tam giác ABC có G là trọng tâm. Qua G, kẻ đường thẳng // AC cắt cạnh AB tại K. CM: AB = 3AK
Cho tam giác ABC có trung tuyến AO, trọng tâm G, đường thănhr đi qua G cắt AB và AC lần lượt tại M và N. Từ BC kẻ đg thẳng song song với MN cắt AO lần lượt tại H và K Cm AB/AM+AC/AN=3
Xét 2 tam giác AMG và ABH ta có:
\(\widehat{BAH}\) chung
\(\widehat{AMG}=\widehat{ABH}\) (cặp góc đồng vị do BH//MG)
\(\Rightarrow\Delta AMG\sim\Delta ABH\left(g.g\right)\)
\(\Rightarrow\dfrac{AB}{AM}=\dfrac{AH}{AG}\) (1)
Xét 2 tam giác ANG và ACK có:
\(\widehat{CAK}\) chung
\(\widehat{ANG}=\widehat{ACK}\) (cặp góc đồng vị do CK//GN)
\(\Rightarrow\Delta ANG\sim\Delta ACK\left(g.g\right)\)
\(\Rightarrow\dfrac{AC}{AN}=\dfrac{AK}{AG}\) (2)
Xét hai tam giác BOH và COK ta có:
\(\widehat{BOH}=\widehat{COK}\) (đối đỉnh)
\(BO=CO\) (AO là đường trung tuyến nên O là trung điểm của BC)
\(\widehat{HBO}=\widehat{KCO}\) (so le trong vì BH//MN và CK//MN ⇒ BH//CK)
\(\Rightarrow\Delta BOH=\Delta COK\left(g.c.g\right)\)
\(\Rightarrow HO=OK\) (hai cạnh t.ứng)
\(\Rightarrow HK=2HO\)
Ta lấy (1) + (2) \(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{AH+AK}{AG}=\dfrac{AH+AH+HK}{AG}=\dfrac{2AH+HK}{AG}\)
\(=\dfrac{2AH+2HO}{AG}=\dfrac{2\left(AH+HO\right)}{AG}=\dfrac{2AO}{AG}\)
Mà G là trọng tâm của tam giác ABC \(\Rightarrow AO=\dfrac{3}{2}AG\)
\(\Rightarrow\dfrac{AB}{AM}+\dfrac{AC}{AN}=\dfrac{2\cdot\dfrac{3}{2}AG}{AG}=2\cdot\dfrac{3}{2}=3\left(đpcm\right)\)
Cho tam giác ABC có AB<AC, qua trọng tâm G kẻ đường thẳng a cắt AB tại M, cắt AC tại N, kẻ BI//AG, KC//AG. CM:
BI+KC=AG
Gọi J là trung điểm BC. Khi đó AJ là trung tuyến. Vậy thì AG = 2GJ. (1)
Xét tứ giác BIKC có BI cùng CK cùng song song với AG nên BI // CK hay BIKC là hình thang.
Xét hình thang BIKC có :
J là trung điểm BC
GJ // BI // KC
Suy ra GJ là đường trung bình hình thang BIKC.
Từ đó ta có: \(BI+CK=2GJ\) (2)
Từ (1) và (2) suy ra \(BI+KC=AG\)
Cho tam giác ABC, G là trọng tâm. Qua G kẻ đường thẳng cắt AB tại M, cắt AC tại N. Tính AB/AM+AC/AN
hình tự vẽ nha bn! gọi K,I,P lần lượt là tđ của AB,AC,BC
ta có AG/AP=2/3=> S AMG/ABP=2/3=> AM/AB=2/3
ta có AM/AB=2/3,AG/AP=2/3=> MG//BP (định lý talet đảo)
khi MG//BP=> AB/AM=AP/AG (1)
khi GN//PC (MG//BP) => AP/AG=AC/AN (2)
từ (1),(2)=> AB/AM+AC/AN=2AP/AG=2.3/2=3
Cho tam giác ABC có đường trung tuyến AM và trọng tâm G. Qua G kẻ đường thẳng song song với AB cắt BC tại H. Từ H kẻ đường thẳng song song song với AC cắt AB ở K. a) Tính tỉ số b) Tứ giác BKGH là hình gì? Vì sao? c) Tìm điều kiện của tam giác ABC để tứ giác BKGH là hình thoi? hình vuông?
Cho tam giác ABC có G là trọng tâm. Qua G kẻ đường thẳng cắt hai cạnh AB, AC lần lượt tại M và N. CMR:
\(\frac{AB}{AM}+\frac{AC}{AN}=3\)
Cho tam giác ABC có đường cao AH, trọng tâm G. Kẻ đường thẳng đi qua G và song song với BC cắt các cạnh AB, AC tại M, N. Nếu diện tích tam giác ABC bằng 36 \(cm^2\)thì diện tích tam giác HMN=?
Cho tam giác abc có trung tuyến AD trọng tâm G và AB bằng 18 cm BC = 16 cm
a> một đường thẳng d1 đi qua G và song song vs cạnh BC cắt AB tại M .Tính độ dài đoạn thẳng BM
b>Kẻ đường thẳng d2 đi qua G và song song vs cạnh DM cắt cạnh BC tại N . Tính độ dài đoạn BN
Đề năm 2008-2009 ai thần đồng giúp
Cho tam giác ABC có G là trọng tâm. Qua G kẻ đường thẳng d sao cho d cắt cả hai cạnh AB, AC. Gọi H, K, L lần lượt là chân đường vuông góc kẻ từ các điểm A, B, C đến đường thẳng d. Chứng minh AH = BK + CL
Gọi E là trung điểm KL; I là trung điểm AG
\(\left\{{}\begin{matrix}KE=EL\\BD=DC\end{matrix}\right.\Rightarrow ED\) là đtb hthang \(BCLK\left(BK//LC.do.cùng.\perp KL\right)\)
\(\Rightarrow ED=\dfrac{BK+CL}{2}\Rightarrow2ED=BK+CL\left(1\right)\)
Vì G là trọng tâm tam giác ABC nên \(GD=\dfrac{1}{2}AG\)
Mà \(AI=IG=\dfrac{1}{2}AG\) nên \(GD=AI=IG\)
Ta có \(ED//BK//LC\left(t/c.đtb\right)\Rightarrow ED\perp KL\left(BK\perp KL\right)\)
Áp dụng định lí Ta-lét cho \(AH//ED\left(\perp KL\right)\) ta có
\(\dfrac{AH}{ED}=\dfrac{AG}{GD}=2\Rightarrow AH=2ED\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow AH=BK+CL\)
Cho tam giác ABC có G là trọng tâm. Qua G vẽ đường thẳng d cắt hai cạnh AB và AC tại D và E. Chứng minh: AB/AD=AC/AE=3
Cho tam giác ABC . G là trọng tâm , d là đường thẳng đi qua G cắt cạnh AB,AC theo thứ tự tại M và N , khi đó AB/AM +AC/AN=...