Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 3 2017 lúc 12:14

Đáp án D

Bình luận (0)
Thầy Cao Đô
Xem chi tiết
Nguyễn Huy Tú
10 tháng 4 2021 lúc 14:55

Bài 1 : 

Đặt \(x^2=t\left(t\ge0\right)\)khi đó phương trình tương đương 

\(t+t^2-6=0\)

Ta có : \(\Delta=1+24=25\)

\(t_1=\frac{-1-5}{2}=-3;t_2=\frac{-1+5}{2}=2\)

TH1 : \(x^2=-3\)( vô lí ) 

TH2 : \(x^2=2\Leftrightarrow x=\pm\sqrt{2}\)

Vậy tập nghiệm của phương trình là S = { \(\pm\sqrt{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thị Phương
5 tháng 5 2021 lúc 20:37

a) \(x^2+x^4-6=0\)

Đặt \(x^2=t\left(t\ge0\right)\)

⇒ t + \(t^2\) - 6 = 0 

⇒ \(t^2+t-6=0\)

⇒ Δ = \(1^2-4.\left(-6\right)\)

        = 25

x1 = \(\dfrac{-1-5}{2}\) = - 3 (L)

x2 = \(\dfrac{-1+5}{2}\) = 2 (TM)

Thay  \(x^2\) = 2 ⇒ x = \(\pm\sqrt{2}\)

Vậy x = \(\left\{\sqrt{2};-\sqrt{2}\right\}\)

b)   (d) : y = 4x +1 - m

      (p) : y = \(x^2\)

Xét phương trình hoành độ giao điểm

\(x^2=4x+1-m\)

⇒ \(x^2-4x+m-1=0\)

Δ' = 4 - m + 1

    = 5 - m

Để (d) cắt (p) tại hai điểm phân biệt thì Δ' > 0

5 - m > 0 

⇒ m < 5

Vậy m < 5 thì (d) cắt (p) tại hai điểm phân biệt

Gọi tọa độ giao điểm của (d) và (p) là (x1;y1) và (x2;y2)

Theo Vi-ét : \(\left\{{}\begin{matrix}S=x_1+x_2=4\\P=x_1x_2=m-1\end{matrix}\right.\)

và y1 = \(x_1^{2_{ }}\) ; y2 = \(x_2^2\)

Khi đó : \(\sqrt{y_1}.\sqrt{y_2}=5\) ⇒ \(\sqrt{y_1.y_2}=5\)

⇔ \(\sqrt{\left(x_1x_2\right)^2}=5\) ⇔ \(|m-1|=5\)

⇔ \(\left[{}\begin{matrix}m-1=5\\m-1=-5\end{matrix}\right.\) ⇔ \(\left[{}\begin{matrix}m=6\left(L\right)\\m=-4\left(TM\right)\end{matrix}\right.\)   

Vậy m = - 4 thì TMĐKBT

 

Bình luận (0)
 Khách vãng lai đã xóa
NGUYỄN HOÀNG VŨ
10 tháng 5 2021 lúc 10:08

a. Giải phương trình x^2 + x^4 - 6 = 0x 

2

 +x 

4

 −6=0.

 

b. Trong mặt phẳng tọa độ OxyOxy cho đường thẳng d:d: y = 4x + 1 - my=4x+1−m và parabol (P):(P): y = x^2y=x 

2

 . Tìm giá trị của mm để dd cắt (P)(P) tại hai điểm phân biệt có tung độ y_1y 

1

​ 

  và y_2y 

2

​ 

  sao cho \sqrt{y_1}.\sqrt{y_2} = 5. 

1

​ 

 

​ 

 . 

2

​ 

 

​ 

 =5.

Hướng dẫn giải:

a. Đặt x^2 = tx 

2

 =t, t \ge 0t≥0 thì phương trình đã cho trở thành:

 

t^2 + t - 6 = 0 \Leftrightarrow t^2 - 2t + 3t - 6 = 0 \Leftrightarrow (t-2)(t+3) = 0t 

2

 +t−6=0⇔t 

2

 −2t+3t−6=0⇔(t−2)(t+3)=0 \Leftrightarrow \left[\begin{aligned} & t = 2 \ \text{(thỏa mãn)} \\ & t = -3 \ \text{(loại)} \\ \end{aligned} \right.⇔[ 

​ 

  

t=2 (thỏa m 

a

˜

 n)

t=−3 (loại)

​ 

 .

 

Với t = 2t=2 thì x^2 = 2 \Leftrightarrow x = \pm \sqrt 2.x 

2

 =2⇔x=± 

2

​ 

 .

Vậy phương trình có nghiệm x = \pm \sqrt2x=± 

2

​ 

 .

 

b. Phương trình hoành độ giao điểm: x^2 = 4x + 1 - mx 

2

 =4x+1−m \Leftrightarrow x^2 - 4x + m -1 = 0⇔x 

2

 −4x+m−1=0 (1)

 

\Delta' = 4 - m + 1 = 5 - mΔ 

 =4−m+1=5−m.

 

Để dd cắt (P)(P) tại hai điểm phân biệt thì phương trình (1) có 2 nghiệm phân biệt

 

\Leftrightarrow \Delta' > 0 \Leftrightarrow m < 5⇔Δ 

 >0⇔m<5.

 

Gọi hai giao điểm của dd và (P)(P) có tọa độ (x_1;y_1)(x 

1

​ 

 ;y 

1

​ 

 ) và (x_2;y_2)(x 

2

​ 

 ;y 

2

​ 

 ).

 

Ta có định lí Vi - et: \left\{\begin{aligned} & x_1 + x_2 = 4\\ & x_1x_2 = m-1 \end{aligned} \right.{ 

​ 

  

1

​ 

 +x 

2

​ 

 =4

1

​ 

 x 

2

​ 

 =m−1

​ 

  và y_1 = x_1^2y 

1

​ 

 =x 

1

2

​ 

 ; y_2 = x_2 ^2y 

2

​ 

 =x 

2

2

​ 

 .

 

Khi đó \sqrt{y_1}.\sqrt{y_2} = 5 \Leftrightarrow \sqrt{y_1.y_2} = 5 

1

​ 

 

​ 

 . 

2

​ 

 

​ 

 =5⇔ 

1

​ 

 .y 

2

​ 

 

​ 

 =5

\Leftrightarrow \sqrt{(x_1x_2)^2} = 5 \Leftrightarrow |m-1| = 5⇔ 

(x 

1

​ 

 x 

2

​ 

 ) 

2

 

​ 

 =5⇔∣m−1∣=5

\Leftrightarrow \left[\begin{aligned} & m - 1 = 5\\ & m - 1 = -5 \end{aligned} \right. \Leftrightarrow \left[\begin{aligned} & m = 6 \ \text{(loại)} \\ & m = -4 \ \text{(thỏa mãn)} \end{aligned} \right.⇔[ 

​ 

  

m−1=5

m−1=−5

​ 

 ⇔[ 

​ 

  

m=6 (loại)

m=−4 (thỏa m 

a

˜

 n)

​ 

 .

 

Vậy với m = -4m=−4 thì dd cắt (P)(P) tại hai điểm phân biệt có tung độ y_1y 

1

​ 

  và y_2y 

2

​ 

  sao cho \sqrt{y_1}.\sqrt{y_2} = 5. 

1

​ 

 

​ 

 . 

2

​ 

 

​ 

 =5.

 

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thị Thanh Tâm
Xem chi tiết
Minh Nguyen
5 tháng 6 2021 lúc 19:15

Ptrinh hoành độ giao điểm : \(\frac{1}{2}x^2-mx+m-2=0\)

\(\Delta=m^2-4\cdot\frac{1}{2}\cdot\left(m-2\right)=m^2-2m+4>0\)

Theo viet : \(\hept{\begin{cases}x_1+x_2=\frac{m}{\frac{1}{2}}=2m\\x_1.x_2=\frac{m-2}{\frac{1}{2}}=2m-4\end{cases}}\)   

  => \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m\right)^2-2.\left(2m-4\right)=4m^2-4m+8\)

Có : \(y_1+y_2=\frac{1}{2}x_1^2+\frac{1}{2}x_2^2=\frac{1}{2}\left(x_1^2+x_2^2\right)=\frac{1}{2}\left(4m^2-4m+8\right)\)

\(\Rightarrow2m^2-2m+4=8\)

=> \(m^2-m-2=0\)

=> \(\orbr{\begin{cases}m=2\\m=-1\end{cases}}\)

vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 12 2018 lúc 13:58

Phương trình hoành độ giao điểm của (P) và d:  x 2 − m x + 2 = 0 (1)

P) cắt d tại hai điểm phân biệt A(x1;y1) và B(x2;y2) (1) có hai nghiệm phân biệt

∆ = m2 – 4.2 > 0 m2 > 8 m > 2 2  hoặc m<- 2 2

Khi đó x1, x2 là nghiệm của (1). Áp dụng định lí Vi–ét ta có x1 + x2 = m; x1x2 = 2.

Do A, B d nên y1 = mx1 – 2 và y2 = mx2 – 2.

Ta có:

  y 1 + y 2 = 2 ( x 1 + x 1 ) − 1 < = > m x 1 − 2 + m x 2 − 2 = 2 ( x 1 + x 2 ) − 1 < = > ( m − 2 ) ( x 1 + x 2 ) − 3 = 0 < = > m ( m − 2 ) − 3 = 0 < = > m 2 − 2 m − 3 = 0

m = –1 (loại) hoặc m = 3 (thỏa mãn)

 

Vậy m = 3 là giá trị cần tìm.

Bình luận (0)
Bảo Bình
Xem chi tiết
Bảo Bình
13 tháng 12 2020 lúc 11:22

giúp mik với ạ

Bình luận (1)
Nguyễn Việt Lâm
13 tháng 12 2020 lúc 16:45

Pt hoành độ giao điểm:

\(\dfrac{1}{2}x^2=\left(m+1\right)x-m^2-\dfrac{1}{2}\)

\(\Leftrightarrow x^2-2\left(m+1\right)x+2m^2+1=0\)

\(\Delta'=\left(m+1\right)^2-\left(2m^2+1\right)=-m^2+2m\ge0\)

\(\Rightarrow0\le m\le2\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m^2+1\end{matrix}\right.\)

\(T=y_1+y_2-x_1x_2-\left(x_1+x_2\right)\)

\(T=\dfrac{1}{2}x_1^2+\dfrac{1}{2}x_2^2-x_1x_2-\left(x_1+x_2\right)\)

\(=\dfrac{1}{2}\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\)

\(=2\left(m+1\right)^2-2\left(2m^2+1\right)-\left(2m+2\right)\)

\(=-2m^2+2m-2\)

\(=-2m^2+2m+4-6=\left(2m+2\right)\left(2-m\right)-6\ge-6\)

\(T_{min}=-6\) khi \(m=2\)

Bình luận (0)
Quyên Teo
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 5 2022 lúc 22:09

a: Thay x=0 và y=0 vào (d), ta được

\(2\cdot\left(m-1\right)\cdot0-\left(m^2-2m\right)=0\)

\(\Leftrightarrow m^2-2m=0\)

=>m=0 hoặc m=2

b: Khi m=3 thì (d): \(y=2\left(3-1\right)x-\left(3^2-2\cdot3\right)\)

\(\Rightarrow y=2\cdot2x-9+6=4x-3\)

Phương trình hoành độ giao điểm là:

\(x^2-4x+3=0\)

=>x=1 hoặc x=3

Khi x=1 thì y=1

Khi x=3 thì y=9

Bình luận (0)
Đặng Việt Hùng
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 3 2022 lúc 0:41

Pt hoành độ giao điểm:

\(x^2=mx-m+1\Leftrightarrow x^2-1-m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)-m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-m+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=m-1\end{matrix}\right.\)

(d) và (P) cắt nhau tại 2 điểm pb \(\Rightarrow m\ne2\)

Khi đó: \(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow\left|1\right|+\left|m-1\right|=4\)

\(\Leftrightarrow\left|m-1\right|=3\Rightarrow\left[{}\begin{matrix}m=-2\\m=4\end{matrix}\right.\)

Bình luận (0)
Nguyễn Hoàng Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 11 2023 lúc 23:26

Sửa đề: Sao cho biểu thức T đạt GTLN

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2=\left(m+1\right)x-m^2-\dfrac{1}{2}\)

=>\(\dfrac{1}{2}x^2-\left(m+1\right)x+m^2+\dfrac{1}{2}=0\)

=>\(x^2-\left(2m+2\right)x+2m^2+1=0\)

\(\text{Δ}=\left(2m+2\right)^2-4\left(2m^2+1\right)\)

\(=4m^2+8m+4-8m^2-4=-4m^2+8m\)

Để phương trình có hai nghiệm thì Δ>=0

=>\(-4m^2+8m>=0\)

=>\(-4\left(m^2-2m\right)>=0\)

=>\(m^2-2m< =0\)

=>\(m\left(m-2\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m>=0\\m-2< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=0\\m< =2\end{matrix}\right.\)

=>0<=m<=2

TH2: \(\left\{{}\begin{matrix}m< =0\\m-2>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< =0\\m>=2\end{matrix}\right.\)

=>Loại

\(\dfrac{1}{2}x^2-\left(m+1\right)x+m^2+\dfrac{1}{2}=0\)

\(a=\dfrac{1}{2};b=-\left(m+1\right);c=m^2+\dfrac{1}{2}\)

Theo Vi-et, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{m+1}{\dfrac{1}{2}}=2\left(m+1\right)\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+\dfrac{1}{2}}{\dfrac{1}{2}}=2\left(m^2+\dfrac{1}{2}\right)=2m^2+1\end{matrix}\right.\)

\(T=y_1+y_2-x_1x_2-\left(x_1+x_2\right)\)

\(=\dfrac{1}{2}x_1^2+\dfrac{1}{2}x_2^2-2m^2-1-2m-2\)

\(=\dfrac{1}{2}\left(x_1^2+x_2^2\right)-2m^2-2m-3\)

\(=\dfrac{1}{2}\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-2m^2-2m-3\)

\(=\dfrac{1}{2}\left[\left(2m+2\right)^2-2\left(2m^2+1\right)\right]-2m^2-2m-3\)

\(=\dfrac{1}{2}\left[4m^2+8m+4-4m^2-2\right]-2m^2-2m-3\)

\(=\dfrac{1}{2}\left(8m+2\right)-2m^2-2m-3\)

\(=4m+1-2m^2-2m-3=-2m^2+2m-2\)

\(=-2\left(m^2-m+1\right)\)

\(=-2\left(m^2-m+\dfrac{1}{4}+\dfrac{3}{4}\right)\)

\(=-2\left[\left(m-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]\)

\(=-2\left(m-\dfrac{1}{2}\right)^2-\dfrac{3}{2}< =-\dfrac{3}{2}\)

Dấu '=' xảy ra khi m=1/2

Bình luận (0)
Akai Haruma
30 tháng 11 2023 lúc 23:27

Lời giải:
PT hoành độ giao điểm:

$\frac{1}{2}x^2-(m+1)x+m^2+\frac{1}{2}=0$

$\Leftrightarrow x^2-2(m+1)x+2m^2+1=0(*)$

Để 2 đths cắt nhau tại 2 điểm pb thì pt $(*)$ phải có 2 nghiệm pb

$\Leftrightarrow \Delta'=(m+1)^2-(2m^2+1)>0$

$\Leftrightarrow m(2-m)>0$

$\Leftrightarrow 0< m< 2$
Áp dụng định lý Viet:

$x_1+x_2=2m+2$
$x_1x_2=2m^2+1$
Khi đó:

$T=y_1+y_2-x_1x_2-(x_1+x_2)$

$=\frac{1}{2}(x_1^2+x_2^2)-x_1x_2-(x_1+x_2)$

$=\frac{1}{2}(x_1+x_2)^2-2x_1x_2-(x_1+x_2)$

$=\frac{1}{2}(2m+2)^2-2(2m^2+1)-(2m+2)$

$=-2m^2+2m-2$

Với điều kiện $0< m< 2$ thì biểu thức này không có min nhé. Bạn xem lại.

Bình luận (0)
trang lê
Xem chi tiết
Shanks Tóc Đỏ
22 tháng 3 2017 lúc 21:33

ko biết

Bình luận (0)
vu
22 tháng 3 2017 lúc 21:37

Thế cái j Shanks Tóc Đỏ cx ko bit ak (ngoại trừ bắn nhau và làm hải tặc)

Bình luận (0)
Trần Minh Chiêm
22 tháng 3 2017 lúc 21:38

I don't no

Bình luận (0)