Pt hoành độ giao điểm:
\(\dfrac{1}{2}x^2=\left(m+1\right)x-m^2-\dfrac{1}{2}\)
\(\Leftrightarrow x^2-2\left(m+1\right)x+2m^2+1=0\)
\(\Delta'=\left(m+1\right)^2-\left(2m^2+1\right)=-m^2+2m\ge0\)
\(\Rightarrow0\le m\le2\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m^2+1\end{matrix}\right.\)
\(T=y_1+y_2-x_1x_2-\left(x_1+x_2\right)\)
\(T=\dfrac{1}{2}x_1^2+\dfrac{1}{2}x_2^2-x_1x_2-\left(x_1+x_2\right)\)
\(=\dfrac{1}{2}\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\)
\(=2\left(m+1\right)^2-2\left(2m^2+1\right)-\left(2m+2\right)\)
\(=-2m^2+2m-2\)
\(=-2m^2+2m+4-6=\left(2m+2\right)\left(2-m\right)-6\ge-6\)
\(T_{min}=-6\) khi \(m=2\)