biết \(\int_2^4\dfrac{x+8}{x^2+x-2}dx=ln\dfrac{a}{b}\)
tính a+b
\(\int_2^5\) \(\dfrac{-x^4-3x^2+4}{x^2-1}dx\)
Lời giải:
\(=-\int ^5_2\frac{x^4+3x^2-4}{x^2-1}dx=-\int ^5_2\frac{(x^2-1)(x^2+4)}{x^2-1}dx=-\int ^5_2(x^2+4)dx\)
\(=-|^5_2(\frac{x^3}{3}+4x)=-51\)
Tính các nguyên hàm.
a)\(\int\dfrac{2dx}{x^2-5x}=A\ln\left|x\right|+B\ln\left|x-5\right|+C\) . Tìm 2A-3B.
b)\(\int\dfrac{x^3-1}{x+1}\)dx=\(Ax^3-Bx^2+x+E\ln\left|x+1\right|+C\).Tính A-B+E
a) \(\int\dfrac{2dx}{x^2-5x}=\int\left(\dfrac{-2}{5x}+\dfrac{2}{5\left(x-5\right)}\right)dx=-\dfrac{2}{5}ln\left|x\right|+\dfrac{2}{5}ln\left|x-5\right|+C\)
\(\Rightarrow A=-\dfrac{2}{5};B=\dfrac{2}{5}\Rightarrow2A-3B=-2\)
b) \(\int\dfrac{x^3-1}{x+1}dx=\int\dfrac{x^3+1-2}{x+1}dx=\int\left(x^2-x+1-\dfrac{2}{x+1}\right)dx=\dfrac{1}{3}x^3-\dfrac{1}{2}x^2+x-2ln\left|x+1\right|+C\)
\(\Rightarrow A=\dfrac{1}{3};B=\dfrac{1}{2};E=-2\Rightarrow A-B+E=-\dfrac{13}{6}\)
\(\int\dfrac{1}{cosx.cos\left(x+\dfrac{\pi}{4}\right)}dx\)
\(\int\dfrac{1}{x^3\left(1+x^2\right)}dx=\dfrac{a}{x^2}+blnx+cln\left(1+x^2\right).S=a+b+c=?\)
\(\int\dfrac{5-3x}{\left(x^2-5x+6\right)\left(x^2-2x+1\right)}dx=\dfrac{a}{x-1}-ln\left(\dfrac{x-b}{x-c}\right)+C.P=2a+b\)
Biến đổi: ʃ\(\int\dfrac{1dx}{cosx\dfrac{\sqrt{2}}{2}\left(cosx-sinx\right)}=\int\dfrac{\sqrt{2}dx}{cos^2x\left(1-tanx\right)}=\int\dfrac{\sqrt{2}d\left(tanx\right)}{1-tanx}=-\sqrt{2}\ln trituyetdoi\left(1-tanx\right)\)
https://www.youtube.com/channel/UCzeAuHrGhk8hUszunoNtayw
Luyện Thi THPT Quốc Gia miễn phí 100%
Tính các tích phân sau :
a) \(\int\limits^{\dfrac{\pi}{4}}_0\cos2x.\cos^2xdx\)
b) \(\int\limits^1_{\dfrac{1}{2}}\dfrac{e^x}{e^{2x}-1}dx\)
c) \(\int\limits^1_0\dfrac{x+2}{x^2+2x+1}\ln\left(x+1\right)dx\)
d) \(\int\limits^{\dfrac{\pi}{4}}_0\dfrac{x\sin x+\left(x+1\right)\cos x}{x\sin x+\cos x}dx\)
a)
Ta có \(A=\int ^{\frac{\pi}{4}}_{0}\cos 2x\cos^2xdx=\frac{1}{4}\int ^{\frac{\pi}{4}}_{0}\cos 2x(\cos 2x+1)d(2x)\)
\(\Leftrightarrow A=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos x(\cos x+1)dx=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos xdx+\frac{1}{8}\int ^{\frac{\pi}{2}}_{0}(\cos 2x+1)dx\)
\(\Leftrightarrow A=\frac{1}{4}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin x+\frac{1}{16}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin 2x+\frac{1}{8}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|x=\frac{1}{4}+\frac{\pi}{16}\)
b)
\(B=\int ^{1}_{\frac{1}{2}}\frac{e^x}{e^{2x}-1}dx=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\left ( \frac{1}{e^x-1}-\frac{1}{e^x+1} \right )d(e^x)\)
\(\Leftrightarrow B=\frac{1}{2}\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left | \frac{e^x-1}{e^x+1} \right |\approx 0.317\)
c)
Có \(C=\int ^{1}_{0}\frac{(x+2)\ln(x+1)}{(x+1)^2}d(x+1)\).
Đặt \(x+1=t\)
\(\Rightarrow C=\int ^{2}_{1}\frac{(t+1)\ln t}{t^2}dt=\int ^{2}_{1}\frac{\ln t}{t}dt+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
\(=\int ^{2}_{1}\ln td(\ln t)+\int ^{2}_{1}\frac{\ln t}{t^2}dt=\frac{\ln ^22}{2}+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)
Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{t}\end{matrix}\right.\Rightarrow \int ^{2}_{1}\frac{\ln t}{t^2}dt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|-\frac{\ln t+1}{t}=\frac{1}{2}-\frac{\ln 2 }{2}\)
\(\Rightarrow C=\frac{1}{2}-\frac{\ln 2}{2}+\frac{\ln ^22}{2}\)
d)
\(D=\int ^{\frac{\pi}{4}}_{0}\frac{x\sin x+(x+1)\cos x}{x\sin x+\cos x}dx=\int ^{\frac{\pi}{4}}_{0}dx+\int ^{\frac{\pi}{4}}_{0}\frac{x\cos x}{x\sin x+\cos x}dx\)
Ta có:
\(\int ^{\frac{\pi}{4}}_{0}dx=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|x=\frac{\pi}{4}\)
\(\int ^{\frac{\pi}{4}}_{0}\frac{x\cos xdx}{x\sin x+\cos x}=\int ^{\frac{\pi}{4}}_{0}\frac{d(x\sin x+\cos x)}{x\sin x+\cos x}=\left.\begin{matrix} \frac{\pi}{4}\\ 0\end{matrix}\right|\ln |x\sin x+\cos x|\)
\(=\ln|\frac{\pi\sqrt{2}}{8}+\frac{\sqrt{2}}{2}|\)
Suy ra \(D=\frac{\pi}{4}+\ln|\frac{\pi\sqrt{2}}{8}+\frac{\sqrt{2}}{2}|\)
Tính cách tích phân sau :
a) \(\int\limits^1_0\left(1+3x\right)^{\dfrac{3}{2}}dx\)
b) \(\int\limits^{\dfrac{1}{2}}_0\dfrac{x^3-1}{x^2-1}dx\)
c) \(\int\limits^2_1\dfrac{ln\left(1+x\right)}{x^2}dx\)
Áp dụng phương pháp tính tích phân, hãy tính các tích phân sau :
a) \(\int\limits^{\dfrac{\pi}{2}}_0x\cos2xdx\)
b) \(\int\limits^{\ln2}_0xe^{-2x}dx\)
c) \(\int\limits^1_0\ln\left(2x+1\right)dx\)
d) \(\int\limits^3_2\left|\ln\left(x-1\right)-\ln\left(x+1\right)\right|dx\)
e) \(\int\limits^2_{\dfrac{1}{2}}\left(1+x-\dfrac{1}{x}\right)e^{x+\dfrac{1}{x}}dx\)
g) \(\int\limits^{\dfrac{\pi}{2}}_0x\cos x\sin^2xdx\)
h) \(\int\limits^1_0\dfrac{xe^x}{\left(1+x\right)^2}dx\)
i) \(\int\limits^e_1\dfrac{1+x\ln x}{x}e^xdx\)
chứng minh:
\(\int\limits^1_0\dfrac{ln\left(x+\sqrt{1-x^2}\right)}{x}dx=\dfrac{3}{4}\int\limits\dfrac{ln\left(1+x\right)}{x}^1_0dx\)
Tính (trình bày cách giải ln nka):
a) \(\int_{\dfrac{\pi}{6}}^{\dfrac{\pi}{3}}\dfrac{1}{cos^4x}dx\)
b) \(\int_0^1\dfrac{\left(x+1\right)^2}{x^2+1}dx\)
c)\(\int_1^2\dfrac{x^2+2lnx}{x}dx\)
d) \(\int_1^2\dfrac{x^2+3x+1}{x^2+x}dx\)
e) \(\int_0^33x\left(x+\sqrt{x^2+16}\right)dx\)
Câu a)
\(\int \frac{1}{\cos^4x}dx=\int \frac{\sin ^2x+\cos^2x}{\cos^4x}dx=\int \frac{\sin ^2x}{\cos^4x}dx+\int \frac{1}{\cos^2x}dx\)
Xét \(\int \frac{1}{\cos^2x}dx=\int d(\tan x)=\tan x+c\)
Xét \(\int \frac{\sin ^2x}{\cos^4x}dx=\int \frac{\tan ^2x}{\cos^2x}dx=\int \tan^2xd(\tan x)=\frac{\tan ^3x}{3}+c\)
Vậy :
\(\int \frac{1}{\cos ^4x}dx=\frac{\tan ^3x}{3}+\tan x+c\)
\(\Rightarrow \int ^{\frac{\pi}{3}}_{\frac{\pi}{6}}\frac{dx}{\cos^4 x}=\)\(\left.\begin{matrix} \frac{\pi}{3}\\ \frac{\pi}{6}\end{matrix}\right|\left ( \frac{\tan ^3 x}{3}+\tan x+c \right )=\frac{44}{9\sqrt{3}}\)
Câu b)
\(\int \frac{(x+1)^2}{x^2+1}dx=\int \frac{x^2+1+2x}{x^2+1}dx=\int dx+\int \frac{2xdx}{x^2+1}\)
\(=x+c+\int \frac{d(x^2+1)}{x^2+1}=x+\ln (x^2+1)+c\)
Do đó:
\(\int ^{1}_{0}\frac{(x+1)^2}{x^2+1}dx=\left.\begin{matrix} 1\\ 0\end{matrix}\right|(x+\ln (x^2+1)+c)=\ln 2+1\)
Câu c)
\(\int \frac{x^2+2\ln x}{x}dx=\int xdx+2\int \frac{2\ln x}{x}dx\)
\(=\frac{x^2}{2}+c+2\int \ln xd(\ln x)\)
\(=\frac{x^2}{2}+c+\ln ^2x\)
\(\Rightarrow \int ^{2}_{1}\frac{x^2+2\ln x}{x}dx=\left.\begin{matrix} 2\\ 1\end{matrix}\right|\left ( \frac{x^2}{2}+\ln ^2x +c \right )=\frac{3}{2}+\ln ^22\)
Câu d)
\(\int^{2}_{1} \frac{x^2+3x+1}{x^2+x}dx=\int ^{2}_{1}dx+\int ^{2}_{1}\frac{2x+1}{x^2+x}dx\)
\(=\left.\begin{matrix} 2\\ 1\end{matrix}\right|x+\int ^{2}_{1}\frac{d(x^2+x)}{x^2+x}=1+\left.\begin{matrix} 2\\ 1\end{matrix}\right|\ln |x^2+x|=1+\ln 6-\ln 2\)
\(=1+\ln 3\)
Câu e)
Xét \(\int 3x(x+\sqrt{x^2+16})dx=\int 3x^2dx+\int 3x\sqrt{x^2+16}dx\)
Có:
\(\int 3x^2dx=x^3+c\)
\(\int 3x\sqrt{x^2+16}dx=\frac{3}{2}\int \sqrt{x^2+16}d(x^2+16)\)
\(=\sqrt{(x^2+16)^3}+c\)
Do đó: \(\int 3x(x+\sqrt{x^2+16})dx=x^3+\sqrt{(x^2+16)^3}+c\)
\(\Rightarrow \int ^{3}_{0}3x(x+\sqrt{x^2+16})dx=\left.\begin{matrix} 3\\ 0\end{matrix}\right|(x^3+\sqrt{(x^2+16)^3}+c)=88\)
1.Tính nguyên hàm :\(\int\dfrac{\sqrt[3]{1+ln^2x}}{x}dx\)
2.Cho d:\(\dfrac{x-7}{7}=\dfrac{y-5}{5}=\dfrac{z}{3}\)và d':\(\left\{{}\begin{matrix}x=2t\\y=-t\\z=2-3t\end{matrix}\right.\) .Cho hai điểm A,B di dộng trên d sao cho AB=3; C,D di động trên d' sao cho CD=4. tính thể tích tứ diện ABCD
1. Đề bài chắc chắn không chính xác, hàm này không thể tìm được nguyên hàm
2.
Trên thực tế, do d và d' vuông góc nên thể tích sẽ được tính bằng:
\(V=\dfrac{1}{6}AB.CD.d\left(d;d'\right)\) trong đó \(d\left(d;d'\right)\) là k/c giữa 2 đường thẳng d và d' (có thể áp dụng thẳng công thức tọa độ)
Còn nguyên nhân dẫn tới công thức tính đó thì:
d có vtcp \(\left(7;5;3\right)\) còn d' có vtcp \(\left(2;-1;-3\right)\) nên d và d' vuông góc
Phương trình d dạng tham số: \(\left\{{}\begin{matrix}x=7+7t'\\y=5+5t'\\z=3t'\end{matrix}\right.\)
Gọi (P) là mp chứa d' và vuông góc d thì pt (P) có dạng:
\(7x+5y+3\left(z-2\right)=0\Leftrightarrow7x+5y+3z-6=0\)
Gọi H là giao điểm (P) và d \(\Rightarrow H\left(\dfrac{105}{83};\dfrac{75}{83};-\dfrac{204}{83}\right)\)
Số xấu dữ quá.
Tính khoảng cách từ điểm H (đã biết) đến đường thẳng d' (đã biết), gọi kết quả là \(h\) (đây thực chất là khoảng cách giữa d và d').
Vậy \(V_{ABCD}=\dfrac{1}{3}.AB.\dfrac{1}{2}.h.CD=...\)
Minh họa hình vẽ cho công thức thể tích bên trên:

Ta có: \(V_{ABCD}=V_{AHCD}-V_{BHCD}\)
\(=\dfrac{1}{3}AH.S_{HCD}-\dfrac{1}{3}BH.S_{HCD}=\dfrac{1}{3}\left(AH-BH\right)S_{HCD}\)
\(=\dfrac{1}{3}AB.S_{HCD}=\dfrac{1}{3}AB.\dfrac{1}{2}.d\left(H;CD\right).CD\)
\(=\dfrac{1}{6}.AB.CD.d\left(AB;CD\right)\)
Trong trường hợp A; B nằm khác phía so với H thì hoàn toàn tương tự:
\(V_{ABCD}=V_{AHCD}+V_{BHCD}=\dfrac{1}{3}AH.S_{HCD}+\dfrac{1}{3}BH.S_{HCD}\)
\(=\dfrac{1}{3}\left(AH+BH\right)S_{HCD}=\dfrac{1}{3}AB.S_{HCD}=...\) kết quả vẫn hoàn toàn giống bên trên
Tính các nguyên hàm sau :
a) \(\int x\left(3-x\right)^5dx\)
b) \(\int\left(2^x-3^x\right)^2dx\)
c) \(\int x\sqrt{2-5x}dx\)
d) \(\int\dfrac{\ln\left(\cos x\right)}{\cos^2x}dx\)
e) \(\int\dfrac{x}{\sin^2x}dx\)
\(\int\dfrac{x+1}{\left(x-2\right)\left(x+3\right)}dx\)
h) \(\int\dfrac{1}{1-\sqrt{x}}dx\)
i) \(\int\sin3x\cos2xdx\)
k) \(\int\dfrac{\sin^3x}{\cos^2x}dx\)
l) \(\int\dfrac{\sin x\cos x}{\sqrt{a^2\sin^2x+b^2\cos^2x}}dx\) (\(a^2\ne b^2\))