tìm n thuộc n để 2n^2+7n+20 chia hết cho 3n+4
Tìm n thuộc Z để
a)2n-1 chia hết cho n+4
b) 3n chia hết cho 5-2n
c) 7n+11 chia hét cho1-3n
a, n-4 chia hết n-4
=>2(n-4)chia hết n-4
hay 2n-4 chia het n-4
vì 2n-1 chia het n-4
Nên (2n-1)-(2n-4) chia hết cho n-4
do đó 3 chia hết n-4
hay (n-4) thuộc ước của 3 là 3;1
+, n-4=3
n=7
+,n-4=1
n=5
Vậy n = 7;5
b, Có 3n chia hết 5-2n
=>2.3n chia hết 5-2n
hay 6n chia hết 5-2n
vì 5-2n chia hết 5-2n
nên 3(5-2n) chia hết 5-2n
do đó 15-6n chia hết 5-2n
Suy ra 6n+(15-6n) chia hết 5-2n
hay 15 chia hết 5-2n
nên (5-2n) thuộc ước của 15 là 15;5;3;1
Xét +, 5-2n=15
2n =-10
n=-5(loại vì n thuộc N)
+, 5-2n =5
2n=0
n=0(TM)
+, 5-2n=1
2n=4
n=2 (TM)
+,5-2n=3
2n=2
n=1(TM)
Vậy n=0;1;2
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
Tìm n thuộc Z để
a)2n-1 chia hết cho n+4
b) 3n chia hết cho 5-2n
c) 7n+11 chia hét cho1-3n
Tìm n thuộc Z để:
a) (2n^2-n+2) chia hết cho (2n+1)
b) (2n^2+n-7) chia hết cho (n-2)
c) (10n^2-7n-5) chia hết cho (2n-3)
d) (2n^2+3n+3) chia hết cho (2n-1)
a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)
\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;1;5;-2\right\}\)
d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{1;0;3;-2\right\}\)
Tìm n thuộc N:
1-3n chia chết cho 2n+1
2-7n chia hết cho 2n+5
4n+9 chia hết cho 3n+1
n2+2n+7 chia hết cho n+2
n2+n+1 chia hết cho n+1
a) ta có: 1 -3n chia hết cho 2n +1
=> 2 - 6n chia hết cho 2n +1
=> 5 - 3 - 6n chia hết cho 2n +1
5 - 3.(1+2n) chia hết cho 2n + 1
...
bn tự làm tiếp đk r
b) ta có: 2-7n chia hết cho 2n + 5
=> 4 - 14n chia hết cho 2n + 5
=> 39 - 35 - 14n chia hết cho 2n + 5
39 - 7.(5+2n) chia hết cho 2n +5
...
c) ta có: 4n + 9 chia hết cho 3n + 1
=> 12n + 27 chia hết cho 3n + 1
12n + 4+23 chia hét cho 3n + 1
4.(3n+1) + 23 chia hết cho 3n + 1
...
d) ta có: n^2 + 2n + 7 chia hết cho n+2
=> n.(n+2) + 7 chia hết cho n + 2
....
e) ta có: n^2 + n + 1 chia hết cho n + 1
=> n.(n+1) + 1 chia hết cho n + 1
...
tim các n thuộc Z để:
a,3n-2 chia hết cho 7n+1
b,n^2+2n+5 chia hết cho n+3
c,2n^2 + 3n + 3 chia hết cho n^2+1
d,n^2 + n +1 chia hết cho n+1
Tìm n thuộc Z , sao cho:
a, 2n+7 chia hết cho n+1
b, 3n + 5 chia hết cho 7n -2
c, n^2 + 3n +1 chia hết cho n+2
a. \(2n+7⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Leftrightarrow\hept{\begin{cases}2n+7⋮n+1\\2n+2⋮n+1\end{cases}}\)
\(\Leftrightarrow5⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(5\right)\)
Suy ra :
+) n + 1 = 1 => n = 0
+) n + 1 = 5 => n = 4
Vậy ........
tìm số nguyên n sao cho :
1,n^2+2n-4 chia hết cho 11
2,2n^3+n^2+7n+1 chia hết cho 2n -1
3,n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
o l m . v n
4,n^3-2 chia hết cho n-2
5, n^3-3n^2-3n-1 chia hết cho n^2+n+1
6, 5^n-2^n chia hết cho 63
các bạn giải giúp mik với ạ mik đang cần gấp
Tìm n thuộc Z biết:
a) -7n + 3 chia hết cho n -1
b) 4n + 5 chia hết cho 4-n
c) 3n+4 chia hết cho 2n +1
d) 4n + 7 chia hết cho 3n + 1
a) \(-7n+3⋮n-1\)
\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow-7n+3+7n-7⋮n-1\)
\(\Rightarrow-4⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)
b) \(4n+5⋮4-n\)
\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)
\(\Rightarrow4n+5-4n+16⋮4-n\)
\(\Rightarrow21⋮4-n\)
\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)
\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
c) \(3n+4⋮2n+1\)
\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+8-6n-3+1⋮2n+1\)
\(\Rightarrow5⋮2n+1\)
\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)
d) \(4n+7⋮3n+1\)
\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)
\(\Rightarrow12n+21-12n-4⋮3n+1\)
\(\Rightarrow17⋮3n+1\)
\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)
\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)
a) Ta có: -7n + 3 chia hết cho n - 1
=> (-7n + 3) % (n - 1) = 0
=> -7n + 3 = k(n - 1), với k là một số nguyên
=> -7n + 3 = kn - k => (k - 7)n = k - 3
=> n = (k - 3)/(k - 7),
với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.
b) Ta có: 4n + 5 chia hết cho 4 - n
=> (4n + 5) % (4 - n) = 0
=> 4n + 5 = k(4 - n), với k là một số nguyên
=> 4n + 5 = 4k - kn
=> (4 + k)n = 4k - 5
=> n = (4k - 5)/(4 + k), với 4 + k khác 0
Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.
c) Ta có: 3n + 4 chia hết cho 2n + 1
=> (3n + 4) % (2n + 1) = 0
=> 3n + 4 = k(2n + 1), với k là một số nguyên
=> 3n + 4 = 2kn + k
=> (2k - 3)n = k - 4
=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0
Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.
d) Ta có: 4n + 7 chia hết cho 3n + 1
=> (4n + 7) % (3n + 1) = 0
=> 4n + 7 = k(3n + 1), với k là một số nguyên
=> 4n + 7 = 3kn + k
=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0
Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.