Cho tam giác ABC có AB=5, AC=8, góc A=60°. Tính độ dài cạnh BC
Cho tam giác ABC, biết
a) a = 12, b = 13, c = 15. Tính độ lớn góc A.
b) AB = 5, AC = 8, góc A = 60 độ. Tính cạnh BC.
a: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(\Leftrightarrow cosA=\dfrac{13^2+15^2-12^2}{2\cdot13\cdot15}=\dfrac{25}{39}\)
=>\(\widehat{A}\simeq50^0\)
b: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(\dfrac{5^2+8^2-BC^2}{2\cdot5\cdot8}=cos60=\dfrac{1}{2}\)
=>\(25+64-BC^2=40\)
=>\(BC^2=49\)
=>BC=7
Bài 2 : Cho tam giác ABC có AB=3cm; AC= 4cm; BC= 5cm . So sánh các góc của tam giác ABC
Bài 3 :Cho tam giác ABC có góc B=60 độ ; góc C = 40 độ . So sánh các cạnh của tam giác ABC
Bài 4 : Cho tam giác ABC có AB=5cm ; AC= 12 cm ; BC=13 cm
a) Tam giác ABC là tam giác gì ?
b) So sánh các góc của tam giác ABC
Bài 5 : Cho tam giác ABC vuông tại A có AB=10cm ; AC= 24 cm
a) Tính độ dài cạnh BC=?
b) Tam giác ABC là tam giác gì ?
bài 2:
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
bài 2:
ta có: AB <AC <BC (Vì 3cm <4cm <5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
HT mik làm giống bạn Dương Mạnh Quyết
ta có: AB<AC<BC(Vì 3cm<4cm<5cm)
=> góc C>góc A> góc B (Các cạnh và góc đồi diện trong tam giác)
Bài 3:
*Xét tam giác ABC, có:
góc A+góc B+góc c= 180 độ( tổng 3 góc 1 tam giác)
hay góc A+60 độ +40 độ=180độ
=> góc A= 180 độ-60 độ-40 độ.
=> góc A=80 độ
Ta có: góc A>góc B>góc C(vì 80 độ>60 độ>40 độ)
=> BC>AC>AB( Các cạnh và góc đối diện trong tam giác)
Cho tam giác ABC có AB=5, góc A=40°, góc B=60°. Tính độ dài cạnh BC
Ta có: \(\widehat{C}=180^0-\left(\widehat{A}+\widehat{B}\right)=180^0-\left(40^0+60^0\right)=80^0\)
Áp dụng định lý sin vào △ABC có:
\(\dfrac{BC}{\sin A}=\dfrac{AB}{\sin C}\)
\(\Rightarrow BC=\dfrac{AB.\sin A}{\sin C}=\dfrac{5.\sin40}{\sin60}\approx3,26\)
1. cho tam giác abc vuông a có cạnh ab=6cm, bc=10cm.các đường phân giác trong và ngoài của góc b cắt ac lần lượt ở d và e. tính các đoạn thẳng bd và be
2. cho tam giác abc vuông ở a, phân giác ad,đường cao ah. biết cd=68cm, bd=51cm. tính bh,hc
3. cho tam giác abc có góc b=60 độ, ac=13cm và bc-ba=7cm. tính độ dài các cạnh ab,bc
4. cho tam giác abc cân ở b và điểm d trên cạnh ac. biết góc bdc=60 độ, ad=3dm, dc=8dm. tính ab
Cho tam giác ABC có góc B =60 độ;AB=7cm;BC=15cm.Trên cạnh BC lấy điểm D sao cho góc BAD= 60 độ.Gọi H là trung điểm của BD.
a)Tính độ dài HD.
b)Tính độ dài AC.
c)Tam giác ABC có phải là tam giác vuông hay không ?
Cho tam giác ABC có góc A =60 độ, cạnh AB dài 3cm, cạnh AC dài 4cm. Đường phân giác của góc ngoài đỉnh A cắt đường thẳng BC tại E. Tính AE=?
Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.
a, Tính độ dài cạnh BC của tam giác ABC.
b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.
c, Chứng minh CB = CD.
Câu 5: Cho tam giác ABC có góc A = 50 độ, góc B = 60 độ, góc C = 70 độ. Hãy so sánh các cạnh của tam giác ABC.
Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.
a, Tính độ dài cạnh BC của tam giác ABC.
b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.
c, Chứng minh CB = CD.
* Hình tự vẽ
a)
Áp dụng định lý Pytago ta tính được cạnh huyền BC = 10cm
b)
Xét tam giác DBC, ta có:
BK là trung tuyến ứng với cạnh CD ( gt )
CA là trung tuyến ứng với cạnh BD ( AB = AD )
BK giao với CA tại E
=> E là trọng tâm của tam giác BDC
=> CE = \(\frac{2AC}{3}\)= 4cm ; AE = 2cm
c)
Xét tam giác BDC, ta có:
CA là trung tuyến ứng với cạnh BD
CA là đường cao ứng với cạnh BD
=> Tam giác BDC cân tại C
=> CB = CD
Câu 5: Cho tam giác ABC có góc A = 50 độ, góc B = 60 độ, góc C = 70 độ. Hãy so sánh các cạnh của tam giác ABC
Theo đề ra: Góc A = 50 độ
Góc B = 60 độ
Góc C = 70 độ
=> Góc A < góc B < góc C
=> BC < AC < AB ( quan hệ giữa góc và cạnh đối diện trong một tam giác )
Cho tam giác ABC;B=60 độ ,AB=7 cm,BC=15cm.Tren cạnh BC lấy điểm D sao cho góc BAD=60 độ.Gọi H là trung điểm của BD.
a/Tính độ dài HD
b/Tính độ dài AC
c/Tam giác ABC có phải tam giác vuông không?
Cho tam giác ABC có AB=8,AC=12 và Â=60 độ .Tính độ dài của cạnh BC ?
Kẻ đường cao BD ứng với AC
Trong tam giác vuông ABD:
\(\left\{{}\begin{matrix}cosA=\dfrac{AD}{AB}\\sinA=\dfrac{BD}{AB}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AD=AB.cosA=8.cos60^0=4\\BD=AB.sinA=8.sin60^0=4\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow CD=AC-AD=8\)
Trong tam giác vuông BCD, áp dụng định lý Pitago:
\(BC=\sqrt[]{BD^2+CD^2}=4\sqrt{7}\) (cm)
Cho tam giác ABC , góc B = 60 độ, BC = 8cm; AB + AC = 12cm . Tính độ dài cạnh AB.