\(Cho\)\(A=\overline{8a4}+\overline{9b3}\)
Biết A chia hết cho 9 và a - b = 6.Tìm a và b
\(Cho\)\(A=\overline{8a4}+\overline{9b3}\)
Biết A chia hết cho 9 và a - b = 6.
Tìm a và b
(Giải ra nhé,làm đúng và giải ra mk sẽ tick cho 10 tick )
Ta có: a-b=6 (1)
Để A chia hết cho 9 thì:
8+a+4+9+b+3 chia hết cho 9.Do đó:
24+a+b=27;36
=>a+b=27-24=3 (loại vì (a-b)=6>(a+b)=3)
a+b=36-24=12 (thỏa mãn)(2)
Từ (1),(2)ta được:
a=(12+6):2=9
b=(12-6):2=3
Vậy a=9;b=3
Cho A=8a4+9b3
Biết A chia hết cho 9 và a-b=6
Tìm a và b
Cho n=\(\overline{7a5}\)+\(\overline{8b4}\)
Biết a-b=6 và n chia hết cho 9 . Tìm a,b
Cho \(n=\overline{7a5}+\overline{8b4}\)
Biết \(a-b=6\) và \(n\) chia hết cho 9. Tìm a và b ?
Ta biết rằng một số và tổng các chữ số của nó có cùng số dư khi chia cho 9.
Tổng \(\overline{7a5}+\overline{8b4}\) chia hết cho 9 nên 7+ a+ 5+ 8+ b+ 4: 9, tức là 24+ a+b :9
==> a+b \(\in\) \(\left\{3;12\right\}\)
Ta có a+ b> 3 ( vì a-b = 6) nên a+b= 12
Từ a+b= 12 và a-b = 6, ta có a= (12+6) : 2= 9
==> b=3
Thử lại: 795+ 834= 1629, chia hết cho 9
Tìm các chữ số tự nhiên a, b sao cho
a) \(\overline{163a}\) ⋮ 3 và 5 b)\(\overline{712a4b}\) chia hết cho cả 2,3,5,và 9
a) Để \(\overline{163a}\) chia hết cho 5 thì \(a\in\left\{0;5\right\}\)
Mà số đó lại chia hết cho 3 nên: \(1+6+3+a=10+a\) ⋮ 3
Với a = 0 thì 10 + 0 = 10 không chia hết cho 3 (loại)
Với a = 5 thì 10 + 5 = 15 ⋮ 3 (nhận)
Vậy a = 5
b) Để \(\overline{712a4b}\) chia hết cho 2 và 5 thì \(b=0\)
Số đó có dạng \(\overline{712a40}\)
Mà số đó lại chia hết cho 3 và 9 nên: \(7+1+2+a+4+0=14+a\) ⋮ 9
\(14+a=18\Rightarrow a=4\)
Vậy (a;b) = (4;0)
Cho n=\(\overline{7a5}\)+\(\overline{8b4}\).Biết a-b=6 và n\(⋮\)9.Tìm a và b
Ta có a - b = 6 ( gt )
-> 2 tổ hợp a và b tương ứng là :
a = ( 6 ; 7 ; 8 ; 9 )
b = ( 0 ; 1 ; 2 ; 3 )
Thay những số a và b vào n = 7a5 + 8b4
=> tổ hợp n là : n = ( 1569 ; 1589 ; 1609 ; 1629 )
Mà n chia hết cho 9 ( gt )
=> n = 1629
hay a = 9 , b = 3
Ta có: \(n⋮9\)
\(\Leftrightarrow a+5+7+8+b+4⋮9\)
\(\Leftrightarrow a+b+24⋮9\)
\(\Leftrightarrow a+b< 19\)(Vì \(0\le a< 10\) và \(0\le b< 10\))
\(\Leftrightarrow a+b\in\left\{3;12\right\}\)
mà a-b=6
nên \(\left[{}\begin{matrix}\left\{{}\begin{matrix}a+b=3\\a-b=6\end{matrix}\right.\\\left\{{}\begin{matrix}a+b=12\\a-b=6\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2a=9\\a-b=6\end{matrix}\right.\Leftrightarrow loại\\\left\{{}\begin{matrix}2a=18\\a-b=6\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=9\\b=a-6=9-6=3\end{matrix}\right.\)
Vậy:a=9; b=3
tìm các chữ số a,b sao cho: a-b=6 và 4a7 + 1b5 chia hết cho 9
a - b = 6 <=> a = 6 + b 4a7 và 1b5 có gạch ngang trên đầu:
4a7 <=> 400 + 10a + 7 1b5
<=> 100 + 10b + 5 (400 + 10a + 7) + (100 + 10b + 5) 512 + 10a + 10b
Thay a = 6 + b vào 512 + 60 + 10b + 10b => 572 + 20b
Chia hết cho 9 khi 5+7+2+2+b chia hết cho 9
<=> b = 2 thỏa mãn
=> a = 8 487 + 125
Đáp số: 612
Tìm các chữ số a, b để:
a) A= 56a3b chia hết cho 2 và 9
b) B= 71a2b chia hết cho 5 và 9
c) C= 6a13b chia hết cho 2; 3; 5; 9.
Tìm các chữ số a, b để:
a) A= 56a3b chia hết cho 2 và 9
b) B= 71a2b chia hết cho 5 và 9
c) C= 6a13b chia hết cho 2; 3; 5; 9.