Tìm n
9n chia hết 4n+1
n-2 chia hết n^2+1
n+2 chia hết n^2-3
Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5
Có: 1n + 2n + 3n + 4n
= (1 + 2 + 3 + 4)n
= 10n
Vì 10 ⋮ 5 nên 10n ⋮ 5 (n ∈ N)
Vậy để 1n + 2n + 3n + 4n chia hết cho 5 thì n ∈ N.
Để 1n + 2n + 3n + 4n chia hết cho 5, ta cần tìm số tự nhiên n sao cho tổng này chia hết cho 5.
Ta có: 1n + 2n + 3n + 4n = 10n
Để 10n chia hết cho 5, ta cần n chia hết cho 5.
Vậy, số tự nhiên n cần tìm là các số chia hết cho 5.
⇒ Các số tự nhiên n chia hết cho 5.
--thodagbun--
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.
nhớ like nha
>_<
Lời giải:
$A=1^n+2^n+3^n+4^n=1+2^n+3^n+4^n$
Nếu $n=4k$ thì:
$A=1+2^n+3^n+4^n=1+2^{4k}+3^{4k}+4^{4k}$
$=1+16^k+81^k+16^{2k}$
$\equiv 1+1+1+1\equiv 4\pmod 5$
---------------
Nếu $n=4k+1$
$A=1+2^n+3^n+4^n=1+2^{4k+1}+3^{4k+1}+4^{4k+1}$
$=1+16^k.2+81^k.3+16^{2k}.4$
$\equiv 1+1^k.2+1^k.3+1^k.4\equiv 10\equiv 0\pmod 5$
Nếu $n=4k+2$
$A=1+2^n+3^n+4^n=1+2^{4k+2}+3^{4k+2}+4^{4k+2}$
$=1+16^k.2^2+81^k.3^2+16^{2k}.4^2$
$\equiv 1+1^k.2^2+1^k.3^2+1^{2k}.4^2\equiv 30\equiv 0\pmod 5$
Nếu $n=4k+3$
$A=1+2^n+3^n+4^n=1+2^{4k+3}+3^{4k+3}+4^{4k+3}$
$=1+16^k.2^3+81^k.3^3+16^{2k}.4^3$
$\equiv 1+1^k.2^3+1^k.3^3+1^{2k}.4^3\equiv 100\equiv 0\pmod 5$
Vậy chỉ cần $n$ không chia hết cho $4$ thì $1^n+2^n+3^n+4^n$ sẽ chia hết cho $5$
≤a) (1n +13 ) chia hết cho ( n-5) với n>5
(15 - 2n )chia hết cho ( n+ 1 ) với n < 7
( 6n + 9 ) chia hết cho ( 4n - 1 ) với n lớn hơn hoặc bằng 1
5.n chia hết cho -2
8 chia hết cho n
9 chia hết cho n+1
n-18 chia hết cho 17
b: \(n\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)
1) Ta có: \(2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
2) Ta có: \(n+2⋮n-3\)
\(\Leftrightarrow n-3+5⋮n-3\)
mà \(n-3⋮n-3\)
nên \(5⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(5\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
Vậy: \(n\in\left\{4;2;8;-2\right\}\)
Chứng minh 1n2 +n+2 không chia hết cho15
Bài 6: Tìm giá trị nguyên của n để :
1) 3n^3 +10n^2 - 5 chia hết cho 3n+1
2) 4n^3 +11n^2 +5n+ 5 chia hết cho n+2
3) n^3 - 4n^2 +5n -1 chia hết cho n-3
1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)
hay \(n\in\left\{0;1;-1\right\}\)
Tìm n để: A)2n - 1 chia hết cho n+1
b) 4n-1 chia hết cho 2n +1
c) 5-3n chia hết cho n-1
d)n^2 +3n+5 chia hết cho n+3
e)n^2+4n+3 chia hết cho n+4