Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
👾thuii
Xem chi tiết
Toru
11 tháng 11 2023 lúc 22:33

Có: 1n + 2n + 3n + 4n

= (1 + 2 + 3 + 4)n

= 10n

Vì 10 ⋮ 5 nên 10n ⋮ 5 (n ∈ N)

Vậy để 1n + 2n + 3n + 4n chia hết cho 5 thì n ∈ N.

BÍCH THẢO
11 tháng 11 2023 lúc 22:26

Để 1n + 2n + 3n + 4n chia hết cho 5, ta cần tìm số tự nhiên n sao cho tổng này chia hết cho 5.

Ta có: 1n + 2n + 3n + 4n = 10n

Để 10n chia hết cho 5, ta cần n chia hết cho 5.

Vậy, số tự nhiên n cần tìm là các số chia hết cho 5.

 ⇒ Các số tự nhiên n chia hết cho 5.

--thodagbun--

BÍCH THẢO
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 9 2023 lúc 20:16

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

Đỗ Đức Hà
Xem chi tiết
Akai Haruma
22 tháng 11 2021 lúc 17:52

Lời giải:
$A=1^n+2^n+3^n+4^n=1+2^n+3^n+4^n$

Nếu $n=4k$ thì:

$A=1+2^n+3^n+4^n=1+2^{4k}+3^{4k}+4^{4k}$

$=1+16^k+81^k+16^{2k}$

$\equiv 1+1+1+1\equiv 4\pmod 5$

---------------

Nếu $n=4k+1$

$A=1+2^n+3^n+4^n=1+2^{4k+1}+3^{4k+1}+4^{4k+1}$

$=1+16^k.2+81^k.3+16^{2k}.4$

$\equiv 1+1^k.2+1^k.3+1^k.4\equiv 10\equiv 0\pmod 5$

Nếu $n=4k+2$

$A=1+2^n+3^n+4^n=1+2^{4k+2}+3^{4k+2}+4^{4k+2}$

$=1+16^k.2^2+81^k.3^2+16^{2k}.4^2$

$\equiv 1+1^k.2^2+1^k.3^2+1^{2k}.4^2\equiv 30\equiv 0\pmod 5$

Nếu $n=4k+3$

$A=1+2^n+3^n+4^n=1+2^{4k+3}+3^{4k+3}+4^{4k+3}$

$=1+16^k.2^3+81^k.3^3+16^{2k}.4^3$

$\equiv 1+1^k.2^3+1^k.3^3+1^{2k}.4^3\equiv 100\equiv 0\pmod 5$

Vậy chỉ cần $n$ không chia hết cho $4$ thì $1^n+2^n+3^n+4^n$ sẽ chia hết cho $5$

Nguyến Thị Kim Huệ
Xem chi tiết
trần hữu phú
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 1 2022 lúc 14:54

b: \(n\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)

Hello class 6
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 2 2021 lúc 18:39

1) Ta có: \(2⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(2\right)\)

\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)

hay \(n\in\left\{4;2;5;1\right\}\)

Vậy: \(n\in\left\{4;2;5;1\right\}\)

2) Ta có: \(n+2⋮n-3\)

\(\Leftrightarrow n-3+5⋮n-3\)

mà \(n-3⋮n-3\)

nên \(5⋮n-3\)

\(\Leftrightarrow n-3\inƯ\left(5\right)\)

\(\Leftrightarrow n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

Vậy: \(n\in\left\{4;2;8;-2\right\}\)

Hoàng Ngọc Anh
31 tháng 10 lúc 16:59

ko biết

Lee Suho
Xem chi tiết
Đức Long
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 11 2021 lúc 20:43

1: \(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)

\(\Leftrightarrow3n+1\in\left\{1;4;2;-2;-1;-4\right\}\)

\(\Leftrightarrow3n\in\left\{0;3;-3\right\}\)

hay \(n\in\left\{0;1;-1\right\}\)

Nguyễn Thị Thơm
Xem chi tiết