chung minh rang neu a>1 thi\(\sqrt{a+1}\sqrt{a-1}< 2\sqrt{a}\)
chung minh rang :
Neu a,b trai dau thi \(\frac{b-a}{b\sqrt{\frac{-a}{b}}}=\frac{a-b}{a\sqrt{\frac{-b}{a}}}\)
chung minh rang voi a,b duong thi \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
Ta có : \(\left(\sqrt{a+b}\right)^2=a+b\) (1)
: \(\left(\sqrt{a+b}\right)^2=a+b+2\sqrt{ab}\) ( 2 )
Với a , b dương nên \(2\sqrt{ab}>0\) ,do đó từ ( 1) và ( 2 ) suy ra :
\(\left(\sqrt{a+b}\right)^2< \left(\sqrt{a}+\sqrt{b}\right)\)hay \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)=> đpcm
Chung minh rang A=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{99}}+\frac{1}{\sqrt{100}}>10\)>10
Ta có :
\(1>\frac{1}{10}=\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{100}}\)
\(\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{100}}\)
\(............\)
\(\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\)
\(\Rightarrow\)\(A=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\)
Do từ \(1\) đến \(100\) có \(100-1+1=100\) số tự nhiên nên có \(100\) phân số \(\frac{1}{\sqrt{100}}\) ta được :
\(A>100.\frac{1}{\sqrt{100}}=\frac{100}{\sqrt{100}}=\frac{100}{10}=10\)
\(\Rightarrow\)\(A>10\) ( đpcm )
Vậy \(A>10\)
Chúc bạn học tốt ~
chung minh rang voi a,b duong thi\(\sqrt{\left(a+b\right)}< \sqrt{a}+\sqrt{b}\)
\(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
\(\Leftrightarrow\left(\sqrt{a+b}\right)^2< \left(\sqrt{a}+\sqrt{b}\right)^2\)
\(\Leftrightarrow a+b< a+b+2\sqrt{ab}\)
\(\Leftrightarrow2\sqrt{ab}>0\left(luondung\right)\)
Vậy ta có đpcm
Chứng minh rằng :
a, Neu a > 1 thi a > \(\sqrt{a}\)
b, Neu 0 < a < 1 thi a <\(\sqrt{a}\)
a: \(A=a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right)\)
Vì a>1 nên \(\sqrt{a}-1>0\)
=>A>0
hay \(a>\sqrt{a}\)
b: \(A=a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right)\)
Vì a<1 nên \(\sqrt{a}-1< 0\)
=>A<0
hay \(a< \sqrt{a}\)
Cho 3 so duong a,b,c thoa man dieu kien : a+b+c=1. Chung minh rang
\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 5\)
Áp dụng BĐT Bunhia:
\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{\left(1+1+1\right)\left(4a+1+4b+1+4c+1\right)}\)
\(\Rightarrow\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{3.\left(4\left(a+b+c\right)+3\right)}=\sqrt{21}< \sqrt{25}=5\)
Vậy \(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}< 5\)
Chung minh rang : neu (a,b)=1 thi (a^2,a+b)=1
p=\(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\frac{\sqrt{x}-1}{2}\)
a) rut gon a
b)chung minh rang P>0 , \(x\ne1\)
tra loi nhanh giup minh nha. cam on nhiu
gia su a,b la 2 so huu ti duong va khong phai la binh phuong cua mot so huu ti
chung minh rang :neu x,y la hai so huu ti sao cho \(m=x\sqrt{a}+y\sqrt{b}\)la so huu ti thi m=0