Cho a,b,c thỏa mãn a + b + c =3. . Chứng minh \(a^4+b^4+c^{^{ }4}\le a^2+b^2+c^2\)
a)Cho các số thực không âm a,b,c thỏa mãn điều kiện a+b+c=1
cm: \(a^3+b^3+c^3\le\frac{1}{8}+a^4+b^4+c^4\)
b)Cho a,b,c là các số thực thỏa mãn a+b+c=1. Chứng minh:
\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{9}{10}\)
Mình xài p,q,r nhé :))
Ta có:
\(a^3+b^3+c^3=p^3-3pq+3r=1-3q+3r\)
\(a^4+b^4+c^4=1-4q+2q^2+4r\)
Khi đó BĐT tương đương với:
\(\frac{1}{8}+2q^2+4r-4q+1\ge1-3q+3r\)
\(\Leftrightarrow2q^2-q+\frac{1}{8}+r\ge0\)
\(\Leftrightarrow2\left(q-\frac{1}{4}\right)+r\ge0\) ( đúng )
\(a^4+b^4+c^4+\frac{1}{8}\left(a+b+c\right)^4\ge\left(a^3+b^3+c^3\right)\left(a+b+c\right)\)
Khúc đầu có gì đâu nhỉ: \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=p^3-3\left[\left(a+b+c\right)\left(ab+bc+ca\right)-abc\right]\)
\(=p^3-3pq+3r\)
--------------------------------------
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(=\left[\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\right]^2-2\left[\left(ab+bc+ca\right)^2-2abc\left(a+b+c\right)\right]\)
\(=\left(p^2-2q\right)^2-2\left(q^2-2pr\right)\)
\(=p^4-4p^2q+2q^2+4pr\)
Xem thêm các đẳng thức thông dụng tại: https://bit.ly/3hllKCq
Đọc xong lú luôn @_@. Khúc đầu chả hiểu gì hết
mà thôi cũng phải tk ông a 1 cái vì có tâm với nghề
cho a,b,c >0 thỏa mãn \(a^2+b^2+c^2=3\) chứng minh rằng \(\dfrac{a}{ab+3}+\dfrac{b}{bc+3}+\dfrac{c}{ca+3}\le\dfrac{3}{4}\)
cho các số thực dương a,b,c thỏa mãn a2+b2+c2=3abc.
chứng minh rằng \(A=\frac{a^2}{a^4+bc}+\frac{b^2}{b^4+ac}+\frac{c^2}{c^4+ab}\le\frac{3}{2}\)
bạn chia a^2 cho ca tu và mẫu . từ giả thiết ta có : 3abc >= ab +bc+ ca . suy ra : 1/a + 1/b +1/c<=3 . sau khi chia ở A : ta có si ở mẫu . rồi áp dụng cô si ngc la ra . ban nao ko hieu thi nhan voi minh
cho a,b,c>0 thỏa mãn a+b+c=3
chứng minh rằng \(\frac{1}{a^2+b^2+2}+\frac{1}{b^2+c^2+2}+\frac{1}{c^2+a^2+2}\le\frac{3}{4}\)
Đặt a ; b và c = 1
Ta có: \(\frac{1}{a^2+b^2+2}+\frac{1}{b^2+c^2+2}+\frac{1}{c^2+a^2+2}\)
\(\Leftrightarrow\frac{1}{1^2+1^2+2}+\frac{1}{1^2+1^2+2}+\frac{1}{1^2+1^2+2}\)
\(\Leftrightarrow\frac{1}{1+1+2}+\frac{1}{1+1+2}+\frac{1}{1+1+2}\)
\(\Leftrightarrow\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{3}{3}=1\)
\(1>\frac{3}{4}\Rightarrow\)Không thể thỏa mãn đề bài hoặc đề sai.
Cách khác: Nếu bấm máy tính casio thì nó ra là \(\frac{3}{2}\)mà \(\frac{3}{2}>\frac{3}{4}\Rightarrow\)Không thể thỏa mãn đề bài hoặc đề sai
bạn tth làm sai rồi mong các bạn khác giúp đõ
cho a,b,c là các số thực dương thỏa mãn a+b+c=1 chứng minh\(\dfrac{a}{a+b^2}+\dfrac{b}{b+c^2}+\dfrac{c}{c+a^2}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
Cho a,b,c thỏa mãn a+b+c=2 và a2+b2+c2=2.
Chứng minh rằng: 0\(\le\)a,b,c \(\le\frac{4}{3}\)
Áp dụng bất đẳng thức : \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(Có thể chứng minh bằng biến đổi tương đương)
được: \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)(1)
Thay \(a+b=2-c\)và \(a^2+b^2=2-c^2\)vào (1) được:
\(2\left(2-c^2\right)\ge\left(2-c\right)^2\Leftrightarrow4-2c^2\ge4-4c+c^2\Leftrightarrow3c^2-4c\le0\)
Giải ra được \(0\le c\le\frac{4}{3}\)
Tương tự với a,b ta suy ra được điều phải chứng minh.
Cho a,b,c >0 thỏa mãn abc=1. Chứng minh
\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\sqrt{3}\)
Cho \(a,b,c>0\) thỏa mãn \(a^4+b^4+c^4=3\). Chứng minh:
\(\dfrac{a^2}{b^3+1}+\dfrac{b^2}{c^3+1}+\dfrac{c^2}{a^3+1}\ge\dfrac{3}{2}\)
cho a,b,c thỏa mãn: a+b+c=3/2 chứng minh a^2+b^2+c^2>=3/4