Đề sai. Nếu a=2;b=1;c=0 thì \(a^4+b^4+c^4=16+1+0=17\)
\(a^2+b^2+c^2=4+1+0=5\)
Đề sai. Nếu a=2;b=1;c=0 thì \(a^4+b^4+c^4=16+1+0=17\)
\(a^2+b^2+c^2=4+1+0=5\)
a)Cho các số thực không âm a,b,c thỏa mãn điều kiện a+b+c=1
cm: \(a^3+b^3+c^3\le\frac{1}{8}+a^4+b^4+c^4\)
b)Cho a,b,c là các số thực thỏa mãn a+b+c=1. Chứng minh:
\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{9}{10}\)
cho các số thực dương a,b,c thỏa mãn a2+b2+c2=3abc.
chứng minh rằng \(A=\frac{a^2}{a^4+bc}+\frac{b^2}{b^4+ac}+\frac{c^2}{c^4+ab}\le\frac{3}{2}\)
cho a,b,c>0 thỏa mãn a+b+c=3
chứng minh rằng \(\frac{1}{a^2+b^2+2}+\frac{1}{b^2+c^2+2}+\frac{1}{c^2+a^2+2}\le\frac{3}{4}\)
Cho a,b,c thỏa mãn a+b+c=2 và a2+b2+c2=2.
Chứng minh rằng: 0\(\le\)a,b,c \(\le\frac{4}{3}\)
Cho a,b,c >0 thỏa mãn abc=1. Chứng minh
\(\frac{1}{\sqrt{a^4-a^3+ab+2}}+\frac{1}{\sqrt{b^4-b^3+bc+2}}+\frac{1}{\sqrt{c^4-c^3+ca+2}}\le\sqrt{3}\)
Cho a,b,c > 0 thỏa mãn \(a\sqrt{\dfrac{b}{c}}+b\sqrt{\dfrac{c}{a}}+c\sqrt{\dfrac{a}{b}}=3\). Chứng minh rằng:
\(N=\dfrac{a^4}{b^2}+\dfrac{b^4}{c^2}+\dfrac{c^4}{a^2}\ge3\)
Cho a,b,c \(\ge\)\(\frac{-3}{4}\)thỏa mãn a+b+c=1. Chứng minh rằng \(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{9}{10}\)
Cho a, b, c > 0 thỏa mãn abc = 8. CMR:
\(\dfrac{a}{ac+4}+\dfrac{b}{ab+4}+\dfrac{c}{bc+4}\le\dfrac{a^2+b^2+c^2}{16}\)
Cho a,b,c,d là các số thực thỏa mãn a+b+c+d=0. Chứng minh rằng :
\(7\left(a^2+b^2+c^2+d^2\right)^2\ge12\left(a^4+b^4+c^4+d^4\right)\)