khử mẫu của biểu thức lấy căn
\(\sqrt{\frac{3}{2a^3}}\) với a lớn hơn 0
khử mẫu của biểu thức lấy căn
a.\(\sqrt{\dfrac{4}{5}}\)
b.\(\sqrt{\dfrac{3}{125}}\)
c.\(\sqrt{\dfrac{3}{2a^3}}\) với a>0
Bài 2: Khử mẫu biểu thức lấy căn:
a)\(\sqrt{\dfrac{3}{2a}}\) với a\(\ge\)0 b) \(\sqrt{\dfrac{3ab}{2}}\) với ab>0
a) `=(\sqrt3)/(\sqrt(2a)) = (\sqrt(6a))/(2a)`
b) `=(\sqrt(3ab))/(\sqrt2) = (\sqrt(6ab))/4`
Khử mẫu của biểu thức lấy căn:
a, \(\sqrt{\frac{3}{125}}\)
b. \(\sqrt{\frac{3}{2a^3}}\) với a > 0
c, \(\sqrt{\frac{\left(1-\sqrt{3}\right)^2}{27}}\)
d. \(\sqrt{\frac{11}{540}}\)
a) \(\sqrt{\frac{3}{125}}=\frac{\sqrt{3.125}}{125}=\frac{\sqrt{375}}{125}=\frac{5\sqrt{15}}{125}=\frac{\sqrt{15}}{25}\)
b) \(\sqrt{\frac{3}{2a^3}}=\frac{\sqrt{3.2a^3}}{2a^3}=\frac{\sqrt{6a^3}}{2a^3}\)
c) \(\sqrt{\frac{\left(1-\sqrt{3}\right)^2}{27}}=\frac{\sqrt{27\left(1-\sqrt{3}\right)^2}}{27}=\frac{3.\left(\sqrt{3}-1\right)\sqrt{3}}{27}=\frac{\left(\sqrt{3}-1\right)\sqrt{3}}{9}\)
d) \(\sqrt{\frac{11}{540}}=\frac{\sqrt{11.540}}{540}=\frac{\sqrt{5940}}{50}=\frac{6\sqrt{165}}{50}=\frac{3\sqrt{165}}{25}\)
Khử mẫu của biểu thức lấy căn \(\sqrt{\frac{-5}{3x}}\)với x<0
khử mẫu của biểu thức lấy căn
\(\frac{x}{y}\) \(\sqrt{\frac{y}{x}}\) với x,y>0
2/ \(\sqrt{\frac{x}{64y^3}}\) với x,y>0
Khử mẫu của biểu thức lấy căn
\(\sqrt{\frac{\left(1+\sqrt{2}\right)^3}{27}}\)
Đưa 1 thừa số vào trong dấu căn
\(ab\sqrt{\frac{1}{a}+\frac{1}{b}}vớia>0,b>0\)
Lời giải:
\(\sqrt{\frac{(1+\sqrt{2})^3}{27}}=\sqrt{\frac{(1+\sqrt{2})^3}{3^3}}=\sqrt{\frac{3(1+\sqrt{2})^3}{3^4}}\)
\(=\frac{(1+\sqrt{2})\sqrt{3+3\sqrt{2}}}{9}\)
\(ab\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{(ab)^2(\frac{1}{a}+\frac{1}{b})}=\sqrt{ab^2+a^2b}\)
Khử mẫu của biểu thức lấy căn
1)√(a/b^2+a/b^4)
2)√a/4 với a>=0
3)√2a/8b^3 với a/b>=0
4)√3/27a^2 với a>0
Khử mẫu của biểu thức lấy căn
1)√(a/b^2+a/b^4)
2)√a/4 với a>=0
3)√2a/8b^3 với a/b>=0
4)√3/27a^2 với a>0
Khử mẫu của biểu thức lấy căn:
a) $\sqrt{\dfrac{3}{2}}$;
b) $\sqrt{\dfrac{3 a}{5 b}}$ với $a . b>0$;
c) $\sqrt{\dfrac{5}{12}}$;
d) $\sqrt{\dfrac{5 x}{18 y}}$ với $x . y>0$;
e) $\sqrt{\dfrac{(1+\sqrt{2})^{3}}{27}}$.
a) \(\sqrt{\frac{3}{2}}=\frac{\sqrt{3}}{\sqrt{2}}=\frac{\sqrt{3}.\sqrt{2}}{2}=\frac{\sqrt{6}}{2}\)
b) \(\sqrt{\frac{3a}{5b}}=\frac{\sqrt{3a}}{\sqrt{5b}}=\frac{\sqrt{3a}.\sqrt{5b}}{5b}=\frac{\sqrt{15ab}}{5b}\left(a;b>0\right)\)
c) \(\sqrt{\frac{5}{12}}=\frac{\sqrt{5}}{\sqrt{12}}=\frac{\sqrt{5}.\sqrt{12}}{12}=\frac{\sqrt{60}}{12}=\frac{2\sqrt{15}}{12}=\frac{\sqrt{15}}{6}\)
d) \(\sqrt{\frac{5x}{18y}}=\frac{\sqrt{5x}}{\sqrt{18y}}=\frac{\sqrt{5x}}{\sqrt{3^2.2y}}=\frac{\sqrt{5x}}{3\sqrt{2y}}\)
\(=\frac{\sqrt{5x}.\sqrt{3y}}{3.2y}=\frac{\sqrt{15xy}}{6xy}\)
Quên mất k ghi đk xy > 0
a) \(\sqrt{\dfrac{3}{2}}=\dfrac{\sqrt{3}.\sqrt{2}}{\sqrt{2}.\sqrt{2}}=\dfrac{\sqrt{6}}{2}\) b)\(\sqrt{\dfrac{3a}{5b}}=\dfrac{\sqrt{3a}.\sqrt{5b}}{\sqrt{5b}.\sqrt{5b}}=\dfrac{\sqrt{15ab}}{5b}\) \(\sqrt{\dfrac{5}{12}}=\dfrac{\sqrt{5}.\sqrt{12}}{\sqrt{12}.\sqrt{12}}=\dfrac{\sqrt{60}}{12}\) d)