Tìm max của B=a.b biết 3a+5b=12
Cho a,b là 2 số duơng thoả mãn điều kiện 3a+5b bằng 12 hãy tìm giá trị lớn nhất của biểu thức D bằng a.b
kết quả của mk là a.b=0 \(\Leftrightarrow a=4;b=0\)
a.cho a,b>0 và a+b=1 Tìm max M=(1+1/a)^2+(1+1/b)^2
b. cho 3a+5b=12 tìm max N=ab
câu 1tìm max\(\frac{3}{4x^3-4x+5}\)
câu 2 Cho 3a+5b=12. Tìm Max B=ab
Câu 2 : Bạn cần thêm điều kiện a,b là các số không âm
Áp dụng bất đẳng thức Cosi, ta có : \(12=3a+5b\ge2.\sqrt{3a.5b}=2\sqrt{15ab}\Rightarrow ab\le\frac{6^2}{15}=\frac{12}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3a+5b=12\\3a=5b\\a,b\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=\frac{6}{5}\end{cases}}\)
Vậy Max B = \(\frac{12}{5}\Leftrightarrow\hept{\begin{cases}a=2\\b=\frac{6}{5}\end{cases}}\)
Bài 1: Cho 3a + 5b = 12. Tìm MAX của B= ab
Bài 2: Tìm MAX A= \(\frac{y}{\left(y+10\right)^2}\left(y>0\right)\)
Bài 3: Tìm MIN A= \(\frac{x^2+x+1}{x^2+2x+1}\)
a)Áp dụng BĐT (x+y)^2>=4xy>>>(3a+5b)^2>=4.3a.5b>>>144>=60ab>>>ab<=12/5
Dấu=xảy ra khi 3a=5b hay khi a=7,5;b=4.5(không nên dùng Cô-si vì không chắc chắn là số dương).
b)Áp dụng BĐT Cô-si>>>(y+10)^2>=40y(do ở đây y>0 nên có thể dùng Cô-si)>>>A<=y/40y=1/40
Dấu= xảy ra khi y=10.
c)A=(x^2+x+1)/x^2+2x+1=1/2(2x^2+2x+1)/x^2+2x+1>>>A/2=(x^2+2x+1)/(x^2+2x+1)+x^2/(x^2+2x+1))>=1+0=1
Dấu= xảy ra khi x=0
Hai số tự nhiên a và b khi chia cho 2 dư lần lượt là 7 và 4.Tìm số dư khi chia cho 9 của 2a,3a,a+b,a.b,6a+5b,a2+b2.
1) Tìm GTLN của biểu thức \(A=\frac{12}{4+x+\sqrt{x}}\)
2) Biết \(b\ne3a;b\ne-3a\) và \(6a^2-15ab+5b^2=0\)
Tính \(D=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)
1) \(A=\frac{12}{4+x+\sqrt{x}}\) . Điều kiện xác định là \(x\ge0\)
Nhận thấy A đạt giá trị lớn nhất khi \(\frac{1}{A}\)đạt giá trị nhỏ nhất.
Ta xét \(\frac{1}{A}=\frac{x+\sqrt{x}+4}{12}=\frac{x}{12}+\frac{\sqrt{x}}{12}+\frac{1}{3}\)
Vì điều kiện xác định \(x\ge0\) nên ta có \(\frac{1}{A}\ge\frac{1}{3}\)
\(\Rightarrow A\le3\)
Dấu "=" xảy ra khi và chỉ khi x = 0
Vậy A đạt giá trị lớn nhất là 3 tại x = 0
2) Từ \(6a^2-15ab+5b^2=0\) , chia cả hai vế của đẳng thức cho \(b^2\ne0\) được :
\(6\left(\frac{a}{b}\right)^2-15.\frac{a}{b}+5=0\) . Đặt \(x=\frac{a}{b}\) , phương trình trở thành :
\(6x^2-15x+5=0\Leftrightarrow\orbr{\begin{cases}x=\frac{15+\sqrt{105}}{12}\\x=\frac{15-\sqrt{105}}{12}\end{cases}}\)
Đến đây xét từng trường hợp của x rồi biểu diễn b theo a và thay vào D là xong.
(Chắc đây là đề thi Casio nên kết quả sẽ rất lẻ)
cho a,b>0 thỏa mãn 3a+5b=12.tìm GTLN của A=ab
Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Áp dụng BĐT Côsi cho 2 số dương, ta có:
\(3a+5b=12\ge2\sqrt{3a.5b}=2\sqrt{15ab}\)
\(\Leftrightarrow\sqrt{15ab}\le6\)
\(\Leftrightarrow ab\le\dfrac{36}{15}\)
Dấu "=" \(\Leftrightarrow\left\{{}\begin{matrix}3a=5b\\3a+5b=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=\dfrac{6}{5}\end{matrix}\right.\)
Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
Theo BĐT cosi ta có:
\(3a+5b\ge2\sqrt{3a\cdot5b}\)
\(\Leftrightarrow3a+5b\ge2\sqrt{15ab}\)
\(\Leftrightarrow12\ge2\sqrt{15ab}\)
\(\Leftrightarrow\sqrt{15ab}\le\dfrac{12}{2}\)
\(\Leftrightarrow\sqrt{15ab}\le6\)
\(\Leftrightarrow15ab\le36\)
\(\Leftrightarrow ab\le\dfrac{36}{15}\)
\(\Leftrightarrow ab\le\dfrac{12}{5}\)
\(\Rightarrow P\le\dfrac{12}{5}\)
Vậy: \(P_{max}=\dfrac{12}{5}\)
Tìm 3 số a,b,c biết : 3a=2b; 5b=7c và 3a + 5b - 7c =60
ta có:3a=2b;5b=7c và 3a+5b-7c=60
=>\(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{14}=\frac{b}{21}\left(1\right)\)
=>\(\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{a}{21}=\frac{c}{15}\left(2\right)\)
từ (1) và (2) ta có :
a/14=b/21=1/15
áp dụng tính chất dãy tỉ số = nhau ta có:
\(\frac{a}{14}=\frac{b}{21}=\frac{c}{15}=\frac{3a+5b-7c}{3.14+5.21-15.7}=\frac{60}{42}=\frac{10}{7}\)
=>a=10/7.14=20
b=10/7.21=30
c=10/7.15=150/7
ta có:
3a=2b suy ra a/2=b/3 suy ra a/14=b/21
5b=7c suy ra b/7=c/5 suy ra b/21=c/15
suy ra: a/14=b/21=c/15=(3a+5b-7c)/(42+105-105)=60/42=10/7
ta có:
a=10/7x14=20
b=10/7x21=30
c=10/7x15=150/7