Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 14:56

a) Sắp xếp lại dãy số liệu theo thứ tự không giảm:

Tứ phân vị thứ nhất là: \(\frac{1}{2}\left( {{x_5} + {x_6}} \right) = \frac{1}{2}\left( {11 + 11} \right) = 11\)

Tứ phân vị thứ hai là: \(\frac{1}{2}\left( {{x_{10}} + {x_{11}}} \right) = \frac{1}{2}\left( {14 + 14} \right) = 14\)

Tứ phân vị thứ ba là: \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right) = \frac{1}{2}\left( {21 + 22} \right) = 21,5\)

b)

c) Do số trận đấu là số nguyên nên ta hiệu chỉnh như sau:

Tổng trận đấu là: \(n = 4 + 8 + 2 + 6 = 20\).

Gọi \({x_1};{x_2};...;{x_{20}}\) là điểm số của các trận đấu được xếp theo thứ tự không giảm.

Ta có:

\({x_1},...,{x_4} \in \begin{array}{*{20}{c}}{\left[ {5,5;10,5} \right)}\end{array};{x_5},...,{x_{12}} \in \begin{array}{*{20}{c}}{\left[ {10,5;15,5} \right)}\end{array};{x_{13}},{x_{14}} \in \begin{array}{*{20}{c}}{\left[ {15,5;20,5} \right)}\end{array};{x_{15}},...,{x_{20}} \in \begin{array}{*{20}{c}}{\left[ {20,5;25,5} \right)}\end{array}\)

• Tứ phân vị thứ hai của dãy số liệu là: \(\frac{1}{2}\left( {{x_{10}} + {x_{11}}} \right)\)

Ta có: \(n = 20;{n_m} = 8;C = 4;{u_m} = 10,5;{u_{m + 1}} = 15,5\)

Do \({x_{10}},{x_{11}} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\left[ {10,5;15,5} \right)}\end{array}}\end{array}\) nên tứ phân vị thứ hai của dãy số liệu là:

\({Q_2} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 10,5 + \frac{{\frac{{20}}{2} - 4}}{8}.\left( {15,5 - 10,5} \right) = 14,25\)

• Tứ phân vị thứ nhất của dãy số liệu là: \(\frac{1}{2}\left( {{x_5} + {x_6}} \right)\).

Ta có: \(n = 20;{n_m} = 8;C = 4;{u_m} = 10,5;{u_{m + 1}} = 15,5\)

Do \({x_5},{x_6} \in \begin{array}{*{20}{c}}{\begin{array}{*{20}{c}}{\left[ {10,5;15,5} \right)}\end{array}}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:

\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 10,5 + \frac{{\frac{{20}}{4} - 4}}{8}.\left( {15,5 - 10,5} \right) = 11,125\)

• Tứ phân vị thứ ba của dãy số liệu là: \(\frac{1}{2}\left( {{x_{15}} + {x_{16}}} \right)\).

Ta có: \(n = 20;{n_j} = 6;C = 4 + 8 + 2 = 14;{u_j} = 20,5;{u_{j + 1}} = 25,5\)

Do \({x_{15}},{x_{16}} \in \begin{array}{*{20}{c}}{\left[ {20,5;25,5} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:

\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 20,5 + \frac{{\frac{{3.20}}{4} - 14}}{6}.\left( {25,5 - 20,5} \right) \approx 21,3\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 10 2017 lúc 7:11

a) Bảng phân bố tần số và tần suất:

Nhóm cá thứ I Tần số Tần suất
[630;635) 1 4,2%
[635;640) 2 8,3%
[640;645) 3 12,5%
[645;650) 6 25%
[650;655] 12 50%
Cộng 24 100%

b) Bảng phân bố tần số và tần suất:

Nhóm cá thứ I Tần số Tần suất
[638;642) 5 18,52%
[642;646) 9 33,33%
[646;650) 1 3,7%
[650;654) 12 44,45%
Cộng 27 100%

c) Biểu đồ tần suất hình cột:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Đường gấp khúc tần suất

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

d) Biểu đồ tần số

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Đường gấp khúc tần số

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

e) * Xét bảng phân bố ở câu a)

- Số trung bình:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Phương sai:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Độ lệch chuẩn:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

* Xét bảng phân bố ở câu b):

- Số trung bình:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Phương sai:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Độ lệch chuẩn:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

Nhận thấy s2 < s1 nên nhóm cá thứ hai có khối lượng đồng đều hơn.

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
22 tháng 9 2023 lúc 0:16

Tham khảo:

a)

b) Cỡ mẫu \(n = 60\)

Tứ phân vị thứ nhất \({Q_1}\) là \(\frac{{{x_{15}} + {x_{16}}}}{2}\). Do \({x_{15}},\;{x_{16}}\) đều thuộc nhóm \(\left[ {40;50} \right)\) nên nhóm náy chứa \({Q_1}\). Do đó,

\(p = 5;\;\;{a_5} = 40;\;\;{m_5} = 15;\;\;{m_1} + {m_2} + {m_3} + {m_4} = 1 + 2 + 4 + 6 = 13;\;{a_6} - {a_5} = 10\)

Ta có  \({Q_1} = 40 + \frac{{\frac{{60}}{4} - 13}}{{15}} \times 10 = 41,33\)

Ý nghĩa: Có 25% số giá trị nhỏ hơn 41,33

Tứ phân vị thứ hai, \({M_e}\) là \(\frac{{{x_{30}} + {x_{31}}}}{2}\). Do \({x_{30}};\;{x_{31}}\) đều thuộc nhóm \(\left[ {50;60} \right)\) nên nhóm này chứa \({M_e}\). Do đó,

\(p = 6;\;\;{a_6} = 50;\;\;{m_6} = 12;\;\;{m_1} + {m_2} + {m_3} + {m_4} + {m_5} = 1 + 2 + 4 + 6 + 15 = 13;\;{a_7} - {a_6} = 10\)

Ta có: \({Q_2} = 50 + \frac{{\frac{{60}}{2} - 28}}{{12}} \times 10 = 51,66\)

Ý nghĩa: Có 50% số giá trị nhỏ hơn 51,66

Tứ phân vị thứ ba \({Q_3}\) là \(\frac{{{x_{45}} + {x_{46}}}}{2}\). Do \({x_{45}},\;{x_{46}}\) đều thuộc nhóm \(\left[ {60;70} \right)\) nên nhóm náy chứa \({Q_3}\). Do đó,

\(p = 7;\;\;{a_7} = 60;\;\;{m_7} = 10;\;\;{m_1} + {m_2} + {m_3} + {m_4} + {m_5} + {m_6} = 1 + 2 + 4 + 6 + 15 + 12 = 40; {a_8} - {a_7} = 10\).

Ta có: \({Q_3} = 60 + \frac{{\frac{{60 \times 3}}{4} - 40}}{{10}} \times 10 = 65\)

Ý nghĩa: Có 75% số giá trị nhỏ hơn 65.

Sách Giáo Khoa
Xem chi tiết
Nguyễn Đắc Định
15 tháng 4 2017 lúc 19:47

a) Bảng phân bố tần số và tần suất:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

b) Bảng phân bố tần số và tần suất:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

c) Biểu đồ tần suất hình cột:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Đường gấp khúc tần suất

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

d) Biểu đồ tần số

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

- Đường gấp khúc tần số

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

e) Xét bảng phân bố ở câu a)

- Số trung bình cộng:

Giải bài 4 trang 129 SGK Đại Số 10 | Giải toán lớp 10

Từ đó ta thấy nhóm cá thứ 2 có khối lượng đồng đều hơn.

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 14:55

a) Sắp xếp lại dãy số liệu theo thứ tự không giảm:

Tứ phân vị thứ nhất là: \(\frac{1}{2}\left( {{x_6} + {x_7}} \right) = \frac{1}{2}\left( {8,9 + 9,2} \right) = 9,05\)

Tứ phân vị thứ hai là: \(\frac{1}{2}\left( {{x_{13}} + {x_{14}}} \right) = \frac{1}{2}\left( {10,7 + 10,9} \right) = 10,8\)

Tứ phân vị thứ ba là: \(\frac{1}{2}\left( {{x_{18}} + {x_{19}}} \right) = \frac{1}{2}\left( {12,2 + 12,5} \right) = 12,35\)

b)

c) Tổng số nhân viên văn phòng là: \(n = 3 + 6 + 8 + 7 = 24\).

Gọi \({x_1};{x_2};...;{x_{24}}\) là lương tháng của các nhân viên văn phòng được xếp theo thứ tự không giảm.

Ta có:

\({x_1},{x_2},{x_3} \in \begin{array}{*{20}{l}}{\left[ {6;8} \right)}\end{array};{x_4},...,{x_9} \in \begin{array}{*{20}{l}}{\left[ {8;10} \right)}\end{array};{x_{10}},...,{x_{17}} \in \begin{array}{*{20}{l}}{\left[ {10;12} \right)}\end{array};{x_{18}},...,{x_{24}} \in \begin{array}{*{20}{l}}{\left[ {12;14} \right)}\end{array}\)

• Tứ phân vị thứ hai của dãy số liệu là: \(\frac{1}{2}\left( {{x_{13}} + {x_{14}}} \right)\)

Ta có: \(n = 24;{n_m} = 8;C = 3 + 6 = 9;{u_m} = 10;{u_{m + 1}} = 12\)

Do \({x_{13}},{x_{14}} \in \begin{array}{*{20}{l}}{\left[ {10;12} \right)}\end{array}\) nên tứ phân vị thứ hai của dãy số liệu là:

\({Q_2} = {u_m} + \frac{{\frac{n}{2} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 10 + \frac{{\frac{{24}}{2} - 9}}{8}.\left( {12 - 10} \right) = 10,75\)

• Tứ phân vị thứ nhất của dãy số liệu là: \(\frac{1}{2}\left( {{x_6} + {x_7}} \right)\).

Ta có: \(n = 24;{n_m} = 6;C = 3;{u_m} = 8;{u_{m + 1}} = 10\)

Do \({x_6},{x_7} \in \begin{array}{*{20}{l}}{\left[ {8;10} \right)}\end{array}\) nên tứ phân vị thứ nhất của dãy số liệu là:

\({Q_1} = {u_m} + \frac{{\frac{n}{4} - C}}{{{n_m}}}.\left( {{u_{m + 1}} - {u_m}} \right) = 8 + \frac{{\frac{{24}}{4} - 3}}{6}.\left( {10 - 8} \right) = 9\)

• Tứ phân vị thứ ba của dãy số liệu là: \(\frac{1}{2}\left( {{x_{18}} + {x_{19}}} \right)\).

Ta có: \(n = 24;{n_j} = 7;C = 3 + 6 + 8 = 17;{u_j} = 12;{u_{j + 1}} = 14\)

Do \({x_{18}},{x_{19}} \in \begin{array}{*{20}{l}}{\left[ {12;14} \right)}\end{array}\) nên tứ phân vị thứ ba của dãy số liệu là:

\({Q_3} = {u_j} + \frac{{\frac{{3n}}{4} - C}}{{{n_j}}}.\left( {{u_{j + 1}} - {u_j}} \right) = 12 + \frac{{\frac{{3.24}}{4} - 17}}{7}.\left( {14 - 12} \right) \approx 12,3\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 5 2018 lúc 11:29

Bảng phân bố tần số

    Thời gian hoàn thành một sản phẩm ở một nhóm công nhân

Thời gian (phút) 42 44 45 48 50 54 cộng
Tần số 4 5 20 10 8 3 50

    Bảng phân bố tần suất

    Thời gian hoàn thành một sản phẩm ở một nhóm công nhân

Thời gian (phút) 42 44 45 48 20 54 Cộng
Tần suất (%) 8 10 40 20 16 6 100%

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 9 2019 lúc 17:54

- Mức lương bình quân của các cán bộ và nhân viên công ty là số trung bình của bảng lương:

- Số trung bình:

Giải bài 5 trang 130 SGK Đại Số 10 | Giải toán lớp 10

Sắp xếp các số liệu theo dãy tăng dần:

20060; 20110; 20350; 20350; 20910; 20960; 21130; 21360; 21410; 21410; 76000; 125000.

Số trung vị: Me = (20960 + 21130)/2 = 21045.

Ý nghĩa: Số trung vị đại diện cho mức lương trung bình của nhân viên (vì trong trường hợp này chênh lệch giữa các số liệu quá lớn nên không thể lấy mức lương bình quân làm giá trị đại diện).

Hoàng Gia Bảo
Xem chi tiết
Nguyễn Vũ Thu Hương
30 tháng 3 2019 lúc 17:42

Đáp án B

Theo bảng số liệu, để thể hiện quy mô và cơ cấu diện tích gieo trồng phân theo nhóm cây của nước ta, năm 2005 và năm 2016, dạng biểu đồ tròn thích hợp nhất

Buddy
Xem chi tiết
Hà Quang Minh
22 tháng 9 2023 lúc 12:58

Tham khảo:

Khoảng biến thiên của mẫu số liệu trên là \(R = 29 - 10 = 19\).

Độ dài mỗi nhóm \(L > \frac{R}{k} = \frac{{19}}{5} = 3,8\).

Ta chọn \(L = 4\) và chia dữ liệu thành các nhóm: \(\left[ {10;14} \right),\left[ {14;18} \right),\left[ {18;22} \right),\left[ {22;26} \right),\left[ {26;30} \right)\).

Khi đó ta có bảng tần số ghép nhóm sau:

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
22 tháng 9 2023 lúc 0:14

Tham khảo:

a)

b) Với mẫu số liệu không ghép nhóm:

\(\bar x = \left( {5 + 3 + 10 + 20 + 25 + 11 + 13 + 7 + 12 + 31 + 19 + 10 + 12 + 17 + 18 + 11 + 32 + 17 + 16 + 2 + 7 + 9 + 7 + 8 + 3 + 5 + 12 + 15 + 18 + 3 + 12 + 14 + 2 + 9 + 6 + 15 + 15 + 7 + 6 + 12} \right):40 = 11.9\)     

Với mẫu số liệu ghép nhóm:

\(\bar x = \frac{{2.5 \times 6 + 7.5 \times 10 + 12.5 \times 11 + 17.5 \times 9 + 22.5 + 27.5 + 32.5 \times 2}}{{40}} = 12.5\).

  Số trung bình của mẫu số liệu không ghép nhóm chính xác hơn.

c) 11 là tần số lớn nhất nên nhóm chưa mốt là \(\left[ {10;15} \right)\).