cuwusuuuuuuuuuu đừng làm tắt nha ko làm câu a nha:
Giúp mình trình bày tự luận! Mn làm đc câu nào thì làm! Làm đừng tắt quá nha
giúp mik mấy bài này ik mn, bài nào mn biết thì làm giúp mik nha, đừng làm tắt nha mn, mik đọc ko hiểu ý, cảm ơn ạ!
Là mấy bài này em làm được bài nào chưa?
Cần gấp nha giúp giùm mik với, đừng làm quá tắt hum hỉu CẦN CÂU C THÔI
Theo như hình vẽ thì I là tâm đường tròn ngoại tiếp ABC và J là giao điểm MI với AO đúng không nhỉ?
Tam giác AMJ vuông tại J nên theo Pitago: \(MJ^2=MA^2-AJ^2\)
Tương tự tam giác vuông MJO: \(MJ^2=MO^2-JO^2\)
Trừ vế theo vế: \(MA^2-AJ^2-MO^2+JO^2=0\) (1)
Tam giác vuông AIJ: \(IJ^2=AI^2-AJ^2\)
Tam giác vuông \(IJO\): \(IJ^2=OI^2-JO^2\)
\(\Rightarrow AI^2-AJ^2-OI^2+JO^2=0\) (2)
Trừ vế (1) và (2): \(MA^2-AI^2-MO^2+OI^2=0\) (3)
Do O là trung điểm BC nên \(IO\perp BC\)
\(\Rightarrow OI^2+OC^2=IC^2\)
Do M, C cùng thuộc đường tròn tâm O đường kính BC \(\Rightarrow OC=OM\)
Do I là tâm đường tròn ngoại tiếp ABC \(\Rightarrow IC=IA\)
\(\Rightarrow OI^2+OM^2=IA^2\Rightarrow OI^2-IA^2=-OM^2\)
Thế vào (3):
\(MA^2-MO^2-MO^2=0\Rightarrow MA=MO\sqrt{2}=\dfrac{BC\sqrt{2}}{2}\Rightarrow BC=\sqrt{2}MA\)
Em vẽ hình ra được không nhỉ? Hiện tại đang không có công cụ vẽ hình nên không hình dung được dạng câu c
câu C.
Do Tâm đường tròn ngoại tiếp tam giác thuộc đường thẳng đó nên gọi tâm đó là I
=> I là giao điểm của đường thẳng qua M vuông góc AO, và trung trực của BC
Gọi điểm N là giao điểm cả AO và BM
=> tam giác AMO vuông tại M, MN vuông góc AO => \(AM^2\) = AN.AO
AK cắt BM tại G => AN.AO = AG.AK
Chứng minh tứ giác nội tiếp và tam giác đồng dạng => AG.AK = 2.BN.BI = 2\(BO^2\)
=> \(AM^2=2BO^2=2BC\)
⇒ BC=\(\sqrt{2}\) AM(đpcm)
giúp mk bài này, tự làm, đừng cop, ko làm tắt. Bài 1 câu a và bài 2 câu 1
Bài 1:
a) Ta có: \(M=\left(\dfrac{x+2}{x^2+2x+1}+\dfrac{x-2}{1-x^2}\right)\cdot\dfrac{x+1}{x}\)
\(=\left(\dfrac{\left(x+2\right)\left(x-1\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}-\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}\right)\cdot\dfrac{x+1}{x}\)
\(=\dfrac{x^2-x+2x-2-\left(x^2+x-2x-2\right)}{\left(x+1\right)^2\cdot\left(x-1\right)}\cdot\dfrac{x+1}{x}\)
\(=\dfrac{x^2+x-2-x^2+x+2}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x}\)
\(=\dfrac{2x}{\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x}\)
\(=\dfrac{2}{x^2-1}\)
Bài 2:
1: Ta có: \(\left(x-5\right)^2+\left(x+3\right)^2=2\left(x-4\right)\left(x+4\right)-5x+7\)
\(\Leftrightarrow x^2-10x+25+x^2+6x+9=2\left(x^2-16\right)-5x+7\)
\(\Leftrightarrow2x^2-4x+34=2x^2-32-5x+7\)
\(\Leftrightarrow2x^2-4x+34-2x^2+5x+25=0\)
\(\Leftrightarrow x+59=0\)
hay x=-59
Vậy: S={-59}
Đừng làm tắt quá nha:(
\(=\dfrac{7-4\sqrt{3}+7+4\sqrt{3}}{1}=14\)
\(=7-4\sqrt{3}+7+4\sqrt{3}=14\)
Cứu ạ làm đừng có tắt nha
Giúp em với ạ đừng làm tắt nha
\(\dfrac{a}{b}=-\dfrac{4}{9}\)
Giúp mình làm chi tiết nha! Đừng tắt quá
c.
\(\Leftrightarrow\left\{{}\begin{matrix}2x+1>0\\\left(2x+1\right)^2>\left(x+2\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>-\dfrac{1}{2}\\x^2>1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x>-\dfrac{1}{2}\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x>1\)
d.
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\2-x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}2-x\ge0\\x>\left(2-x\right)^2\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x\le2\\x^2-5x+4< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x>2\\\left\{{}\begin{matrix}x\le2\\1< x< 4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>2\\1< x\le2\end{matrix}\right.\)
\(\Leftrightarrow x>1\)
2.
Do \(a\in\left(\dfrac{\pi}{2};\pi\right)\Rightarrow sina>0\)
\(\Rightarrow sina=\sqrt{1-cos^2a}=\sqrt{1-\left(-\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)
Giải chi tiết giúp mình! Đừng tắt quá nha. Mn làm đc bài nào thì làm
3.
Do \(sin\left(x+k2\pi\right)=sinx\Rightarrow sin\left(x+2020\pi\right)=sinx\)
\(sin\left(\dfrac{\pi}{2}+x\right)=cos\left(\dfrac{\pi}{2}-\dfrac{\pi}{2}-x\right)=cos\left(-x\right)=cosx\)
\(A=\dfrac{sinx+sin3x+sin5x}{cosx+cos3x+cos5x}=\dfrac{sinx+sin5x+sin3x}{cosx+cos5x+cos3x}\)
\(=\dfrac{2sin3x.cosx+sin3x}{2cos3x.cosx+cos3x}=\dfrac{sin3x\left(2cosx+1\right)}{cos3x\left(2cosx+1\right)}\)
\(=\dfrac{sin3x}{cos3x}=tan3x\)
4.
a.
\(\overrightarrow{CB}=\left(2;-2\right)=2\left(1;-1\right)\)
Do đường thẳng d vuông góc BC nên nhận \(\left(1;-1\right)\) là 1 vtpt
Phương trình đường thẳng d đi qua \(A\left(-1;2\right)\) và có 1 vtpt là \(\left(1;-1\right)\) là:
\(1\left(x+1\right)-1\left(y-2\right)=0\Leftrightarrow x-y+3=0\)
b.
Gọi \(I\left(a;b\right)\) là tâm đường tròn, ta có \(\left\{{}\begin{matrix}\overrightarrow{AI}=\left(a+1;b-2\right)\\\overrightarrow{BI}=\left(a-3;b-2\right)\\\overrightarrow{CI}=\left(a-1;b-4\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AI^2=\left(a+1\right)^2+\left(b-2\right)^2\\BI^2=\left(a-3\right)^2+\left(b-2\right)^2\\CI^2=\left(a-1\right)^2+\left(b-4\right)^2\end{matrix}\right.\)
Do I là tâm đường tròn qua 3 điểm nên: \(\left\{{}\begin{matrix}AI=BI\\AI=CI\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}AI^2=BI^2\\AI^2=CI^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a+1\right)^2+\left(b-2\right)^2=\left(a-3\right)^2+\left(b-2\right)^2\\\left(a+1\right)^2+\left(b-2\right)^2=\left(a-1\right)^2+\left(b-4\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8a=8\\4a+4b=12\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\) \(\Rightarrow I\left(1;2\right)\)
\(\overrightarrow{AI}=\left(2;0\right)\Rightarrow R=AI=\sqrt{2^2+0^2}=2\)
Pt đường tròn có dạng:
\(\left(x-1\right)^2+\left(y-2\right)^2=4\)
Xin mn đừng làm tắt nha mn, E cảm ạ
b: Ta có: \(x\left(x+1\right)-\left(2x+3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2x-3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)
d: Ta có: \(\left(x-1\right)^2-4\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x-1-2x-4\right)\left(x-1+2x+4\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-1\end{matrix}\right.\)