Giải tam giác ABC vuông tại A, biết BC = 9, \(\widehat{C}=53^o\).
Ôn tập:
1. Tìm x, y:
2. Cho \(\Delta\)DMN vuông tại M, biết \(\widehat{D}\)= 37\(^o\) và DN= 10cm. Giải tam giác vuông DMN?
3. Cho \(\Delta\)ABC \(\perp\) tại B, AB= 8cm, \(\widehat{A}\)= 53\(^o\). Giải \(\Delta\)ABC.
a) Áp dụng HTL ta có:\(MH.HP=MH^2\Rightarrow x=\sqrt{2.8}=4\)
\(BC=MH+HP=10\)
Áp dụng HTL ta có: \(HP.NP=MP^2\Rightarrow y=\sqrt{8.10}=4\sqrt{5}\)
b) Áp dụng HTL ta có: \(EQ.QF=DQ^2\Rightarrow x=\dfrac{4^2}{1}=16\)
\(EF=EQ+QF=17\)
Áp dụng HTL ta có: \(QP.EF=y^2\Rightarrow y=\sqrt{17.1}=\sqrt{17}\)
Cho tam giác ABC nhọn. Vẽ AH vuông góc BC tại H. Tia phân giác góc A cắt BC tại D. Tính góc DAH biết \(\widehat{A}=72^o;\widehat{B}=54^o\)
Cho tam giác ABC. Kẻ AH vuông góc với BC tại H. Gọi M là trung điểm BC. Biết \(\widehat{BAH}=\widehat{HAM}=\widehat{MAC}\) . C/minh:
a, Tam giác ABC vuông
b, Tam giác ABM đều
Bài 1.Tam giác ABC vuông tại A, có AB = 21cm, \(\widehat{C}\) = 40°, phân giác BD của góc ABC, D ∈ AC. Tính
a) độ dài đoạn thẳng AC, BC
b) độ dài đoạn thẳng BD
Bài 2. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 25cm, HC = 64cm. Tính \(\widehat{B},\) \(\widehat{C}\)
Bài 3. Cho tam giác ABC vuông tại A có \(\widehat{B}\) = 30 °, AB = 6cm
a) Giải tam giác vuông ABC
b) Vẽ đường cao AH và trung tuyến Am của tam giác ABC. Tính diện tích tam giác AHM
Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)
Cho tam giác ABC vuông tại A, biết \(\widehat{ABC}\)=\(^{60^o}\)và BC=6cm. TRên BC lấy E so cho BA=Be. Đường thẳng vuông góc với BC tại E cắt AC tại D.
b) CM tam giác ABE là tam giác đều và tính độ dài cạnh BC
C) Vẽ AH vuông góc với BC tại H. Tia phân giác của góc BAH cắt BC tại G. CMR CA = CG
Cho tam giác ABC vuông tại A. Vẽ (O) qua A và tiếp xúc với BC tại B, vẽ (O') đi qua A và tiếp xúc với BC tại C
a, Cmr : (O) và (O') tiếp xúc tại A
b, Gọi I là trung điểm của BC. Cmr :\(\widehat{OIO'}=90^0;AI\perp OO'\)
C, Tính các cạnh của tam giác ABC biết bán kính hai đường tròn là R và R'
cho tam giác ABC vuông tại A và đường cao AH
a) Biết HB=4 , HC=9. Giải tam giác ABC
b) Biết AB=6 , góc B=53 độ . giải tam giác ABC
c) E,F lần lượt là hình chiếu của H trên AB,AC,CM. Tam giác EHF là hình chữ nhật và AH=EF
Biết rằng: Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nữa cạnh huyền.
Hãy giải bài toán sau:
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC.
a) CMR: Các tam giác ABC là các tam giác cân tại M
b) Nếu \(\widehat{B}=30^o\) thì tam giác MAC là tam giác gì? Vì sao?
Biết rằng: Trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nữa cạnh huyền.
Hãy giải bài toán sau:
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC.
a) CMR: Các tam giác ABC là các tam giác cân tại M
b) Nếu \(\widehat{B}=30^o\) thì tam giác MAC là tam giác gì? Vì sao?
Cho tam giác ABC vuông tại A (AB > AC), đường cao AH
b) Biết \(\widehat{C}\) \(=60^0\), AC = 8, AB = 12. Giải tam giác HAB
góc B=90-60=30 độ
góc HAB=90-30=60 độ
BC=căn 8^2+12^2=4*căn 13(cm)
HB=AB^2/BC=36/căn 13(cm)
AH=8*12/4*căn 13=24/căn 13(cm)