Sử dụng MTCT, tính \(\sqrt[3]{45}\) và làm tròn kết quả với độ chính xác 0,005.
Sử dụng máy tính cầm tay tính các căn bậc hai số học sau (làm tròn kết quả với độ chính xác 0,005, nếu cần).
\(a)\sqrt {15} ;b)\sqrt {2,56} ;c)\sqrt {17256} ;d)\sqrt {793881} \)
Độ chính xác 0,005 tức là ta cần làm tròn đến hàng phần trăm
\(a)\sqrt {15}=3,8729...\approx 3,87\\b)\sqrt {2,56} = 1,6\\c)\sqrt {17256} =131,3620... \approx 131,36\\d)\sqrt {793881} = 891\)
Sử dụng máy tính cầm tay tìm căn bậc hai số học của các số sau rồi làm tròn các kết quả với độ chính xác 0,005.
a) 3; b) 41; c) 2 021
Làm tròn các kết quả với độ chính xác 0,005 tức là làm tròn đến hàng phần trăm.
\(\begin{array}{l}a)\sqrt 3 = 1,73205.... \approx 1,73\\b)\sqrt {41} = 6,40312.... \approx 6,40\\c)\sqrt {2021} = 44,95553.... \approx 44,96\end{array}\)
Làm tròn các số với độ chính xác 0,005 đc kết quả là:
a)√3=1,73205....≈1,73
b)√41=6,40312....≈6,40
c)√2021=44,95553....≈44,96
a) Hãy làm tròn số x =\(\sqrt 3 \)=1,73205... với độ chính xác d= 0,005.
b) Hãy làm tròn số –634 755 với độ chính xác d= 70.
a) Do độ chính xác đến hàng phần nghìn nên ta làm tròn số 1,73205 đến hàng phần trăm và có kết quả là 1,73.
b) Do độ chính xác đến hàng chục nên ta làm tròn số –634 755 đến hàng trăm và có kết quả là –634 800
Một hình chữ nhật có chiều dài 10 cm chiều rộng 7 cm. Tìm độ dài đường chéo của hình chữ nhật đó (làm tròn kết quả với độ chính xác 0,005)
Độ dài đường chéo HCN:
\(\sqrt{10^2+7^2}=\sqrt{100+49}=\sqrt{149}\approx12,21\left(cm\right)\)
a) Hãy quy tròn số x = \(\sqrt {10} \) = 3,162277... với độ chính xác d = 0,005.
b) Hãy quy tròn số 9 214 235 với độ chính xác d = 500.
a) Do độ chính xác đến hàng phần nghìn nên ta làm tròn số 3,162277 đến hàng phần trăm và có kết quả là 3,16.
b) Do độ chính xác đến hàng trăm nên ta làm tròn số 9 214 235 đến hàng nghìn và có kết quả là 9 214 000.
Làm tròn số 3,14159 với độ chính xác 0,005.
Để làm tròn 3,14159 với độ chính xác 0,005, ta làm tròn đến hàng phần trăm.
Vì chữ số ngay sau phần làm tròn là 1 < 5 nên số 3,14159 làm tròn đến hàng phần trăm là: 3,14
a) Sử dụng máy tính cầm tay để tính rồi viết mỗi số sau dưới dạng số thập phân vô hạn (tuần hoàn hoặc không tuần hoàn): \(\frac{{17}}{3}; - \frac{{125}}{111};\sqrt 5 ; \sqrt {19} \)
b) Làm tròn số \(\sqrt {19} \) với độ chính xác 0,05.
a)
\(\begin{array}{l}\frac{{17}}{3} = 5,(6);\\ - \frac{{125}}{111} = 1,(126);\\\sqrt 5 = 2,2360679....; \sqrt {19} = 4,3588989...\end{array}\)
b) Làm tròn số \( \sqrt {19} \) với độ chính xác 0,05, tức là làm tròn số 4,3588989… đến chữ số hàng phần mười, ta được 4,4.
a: \(\dfrac{17}{3}=5,\left(6\right);-\dfrac{125}{111}=-1,\left(126\right);\sqrt{5}\simeq2,24\)
\(\sqrt{19}\simeq4,36\)
b: \(\sqrt{19}\simeq4,4\)
một thửa ruộng hình thang có tổng độ dài hai đáy là 28,5m, chiều cao là7,65m. tính diện tích thửa ruộng hình thang đó (làm tròn kết quả với độ chính xác là 0.5)
Diện tích thửa ruộng đó là:
\(\dfrac{28,5\cdot7,65}{2}=109,0125\approx109\left(m^2\right)\)
Vậy: ...
Sử dụng máy tính cầm tay tìm số gần đúng cho \(\sqrt[3]{7}\) với độ chính xác 0,0005.
Ta được
Ta chọn số gần đúng là 1,912931183.
Độ chính xác d=0,0005 nên ta có hàng làm tròn là hàng phần nghìn.
Số ở hàng phần nghìn là số 2, số bên phải là số 9>5 nên ta tăng 2 thêm 1 đơn vị và được số quy tròn của 1,912931183 là 1,913
a,hãy làm tròn số a=\(\sqrt{99}\)=39,94987...với độ chính xác d=0,06
b,hãy làm tròn số b=7891233 với độ chính xác d=50
a) Do d = 0.06 là số phần trăm nên ta quy tròn đến hàng phần mười: a≈≈39.9.
b0 Do d = 50 là số chục nên ta quy tròn b đến hàng trăm b ≈≈7891200
tick cho tớ