Bt: Cho tam giác ABC vuông tại A (AB<AC) đường cao AH.Gọi E là điểm đối xứng với B qua H. Đường tròn đường kính EC cắt AC ở K. Chứng minh: HK là tiếp tuyến của đường tròn đường kính EC
cho tam giác ABC vuông tại A bt AB=3cm; BC=4cm tính độ dài AC
Áp dụng đính lý Pitago:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow4^2=3^2+AC^2\)
\(\Leftrightarrow AC^2=7\)
\(\Rightarrow AC=\sqrt{7}\) (cm)
Áp dụng định lí Pytago vào ΔBCA vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=4^2-3^2=7\)
hay \(AC=\sqrt{7}\left(cm\right)\)
a, Xét tam giác ABC và tam giác HAC có
^BCA _ chung
^BAC = ^AHC = 900
Vậy tam giác ABC ~ tam giác HAC (g.g)
\(\dfrac{AB}{AH}=\dfrac{AC}{HC}\Rightarrow AB.HC=AC.AH\)
b, Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
Ta có \(\dfrac{AB}{AH}=\dfrac{BC}{AC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{24}{5}cm\)
\(\Rightarrow CH=\dfrac{AC.AH}{AB}=\dfrac{\dfrac{8.24}{5}}{6}=\dfrac{32}{5}cm\)
cho tam giác abc vuông tại A đg cao AH bt HB=2cm HC=8cm tính độ dài cạch AB AC
\(BC=BH+HC=10\left(cm\right)\\ \text{Áp dụng HTL: }\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{CH\cdot BC}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A (AB<AC). Vẽ đường cao AH (H thuộc BC). Gọi D là điểm đối xứng với B qua H
a) chứng minh tam giác ABC đồng dạng vs tam giác HBA
b) từ C kẻ đường thẳng vuông góc vs tia AD, cắt AD tại E. Chứng minh AH.CD=CE.AD
c) chứng minh tam giác ABC đồng dạng vs tam giác EDC và tính diện tích tam giác EDC bt AB=6cm, AC=8cm
d) bt AH cắt CE tại E, tia FD cắt AC tại K. Chứng minh KD là tia phân giác góc HKE
Cho tam giác ABC vuông tại A,bt AB=6cm,AC=8cm.Tia phân giác BD(D thuộc AC),từ D kẻ DE vuông góc vs BC(E thuộc BC)
a)Tính BC?
b)c/m DA=DE?
c)Tia ED cắt đường thẳng AB tại F.c/m tam giác ADF=tam giác EDC và DF>DE
Cho tam giác ABC vuông tại A,bt AB=6cm,AC=8cm.Tia phân giác BD(D thuộc AC),từ D kẻ DE vuông góc vs BC(E thuộc BC)
a)Tính BC?
b)c/m DA=DE?
c)Tia ED cắt đường thẳng AB tại F.c/m tam giác ADF=tam giác EDC và DF>DE
cho tam giác abc (góc a=90 độ) tia phân giác cua góc abc cắt ac tại i trên cạch bc lấy điểm d sao cho ab=bd gọi giao điiểm của 2 tia di và ab là e cmr
a)di vuông góc với bc
b)tam giác bce là tam giác cân
c)tính góc abc bt ec=2ad
d) cho ab=8cm bc=10cm tính ac
a) Xét \(\Delta ABI\) và \(\Delta DBI:\)
AB = DB (gt).
\(\widehat{ABI}=\widehat{DBI}\) (BI là phân giác \(\widehat{ABC}).\)
BI chung.
\(\Rightarrow\Delta ABI=\Delta DBI\left(c-g-c\right).\\ \Rightarrow\widehat{BAI}=\widehat{BDI}=90^o.\\ \Rightarrow DI\perp BC.\)
b) Xét \(\Delta BCE:\)
ED là đường cao \(\left(ED\perp BC\right).\)
CA là đường cao \(\left(CA\perp AB\right).\)
I là giao điểm của ED và CA.
\(\Rightarrow\) I là trực tâm.
\(\Rightarrow\) BI là đường cao.
Xét \(\Delta BCE:\)
BI là đường cao (cmt).
BI là phân giác (gt).
\(\Rightarrow\) \(\Delta BCE\) cân tại B.
d) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow10^2=8^2+AC^2.\\ \Leftrightarrow AC=6\left(cm\right).\)
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
cho tam giác abc vuông tại a đường cao ah bt AB=6, AC=8 tính BC,BH,CH,AH. Vẽ trung tuyến BM phân giác của gọc BNA cắt AB tại I hân giác của góc BMC cắt BC tại K . CMR IK//AC
Bạn nói rõ AB và AC bằng bao nhiêu đi bạn?
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10
Vậy: BC=10
Cho tam Giác ABC vuông tại B , bt AC=20cm, Ab= 12cm . Tính đọ dài cạnh BC?
\(\Delta ABC\)vuông tại B
Áp dụng định lí Py-ta-go ta có :
\(\Rightarrow BC^2=AC^2+AB^2\)
\(\Rightarrow BC^2=20^2-12^2=256\)
\(\Rightarrow BC=\sqrt{256}=16\left(cm\right)\)
Bạn Phương làm sai ở câu đầu. BC đâu phải cạnh huyền?
Xét tam giác ABC vuông tại B có AC là cạnh huyền.Theo định lí Pytago,ta có:
\(AC^2=AB^2+BC^2\Rightarrow BC^2=AC^2-AB^2\)
\(=20^2-12^2=256\Rightarrow BC=\sqrt{256}=16\)