Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Đoàn
Xem chi tiết
Thắng Nguyễn
8 tháng 1 2018 lúc 18:09

Another way: \(a+b+c\ge\sqrt{3\left(ab+bc+ac\right)}=3\)

Ta có BĐT phụ \(\frac{a^2}{\sqrt{a^3+8}}\ge\frac{11a}{18}-\frac{5}{18}\)

\(\Leftrightarrow\frac{\frac{\left(a-1\right)^2\left(121a^3-192a^2-480a+200\right)}{-324a^3-2592}}{\frac{a^2}{\sqrt{a^3+8}}+\frac{11a}{18}-\frac{5}{18}}\ge0\forall0< a\le1\)

TƯơng tự cho 2 BĐT còn lại ta cũng có:

\(\frac{b^2}{\sqrt{b^3+8}}\ge\frac{11b}{18}-\frac{5}{18};\frac{c^2}{\sqrt{c^3+8}}\ge\frac{11c}{18}-\frac{5}{18}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge\frac{11\left(a+b+c\right)}{18}-\frac{5}{18}\cdot3\ge1\)

"=" khi \(a=b=c=1\)

Vũ Đoàn
7 tháng 1 2018 lúc 23:52
ab+bc+ac=3
Vongola Famiglia
8 tháng 1 2018 lúc 11:38

\(a+b+c\ge\sqrt{3\left(ab+bc+ac\right)}=3\)

\(f\left(x\right)=\frac{x^2}{\sqrt{x^3+8}}\) là hàm lồi vì \(x>0\)

By Jensen'ineq: \(f\left(a\right)+f\left(b\right)+f\left(c\right)\ge3f\left(\frac{a+b+c}{3}\right)\ge3f\left(1\right)=1\)

Phạm Đức Nghĩa( E)
Xem chi tiết
Quỳnh Giang Bùi
Xem chi tiết
An Vy
Xem chi tiết
quang phan duy
9 tháng 7 2019 lúc 8:23

Câu 1 : áp dụng BĐT SVAC ta có \(A\ge\frac{(a+b+c)^2}{\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}}=\frac{1.\sqrt{2a+2b+2c}}{\sqrt{2.}(\sqrt{b+c}+\sqrt{a+b}+\sqrt{a+c})}\)

mặt khác lại có \(\frac{\sqrt{2a+2b+2c}}{\sqrt{2}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}\ge\frac{\sqrt{(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})^2}}{\sqrt{2}.\sqrt{3}.(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c})}=\frac{1}{\sqrt{6}}\)theo bđt svac

\(\Rightarrow A\ge\frac{1}{\sqrt{6}}\)dấu bằng xảy ra tại a=b=c=\(\frac{1}{3}\)

Phác Chí Mẫn
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 9 2019 lúc 19:47

\(P=\frac{4a^2}{\sqrt{16b\left(b+15c\right)}}+\frac{4b^2}{\sqrt{16c\left(c+15a\right)}}+\frac{4c^2}{\sqrt{16a\left(a+15c\right)}}\)

\(\Rightarrow P\ge\frac{8a^2}{17b+15c}+\frac{8b^2}{17c+17a}+\frac{8c^2}{17a+15b}\)

\(\Rightarrow P\ge\frac{8\left(a+b+c\right)^2}{32\left(a+b+c\right)}=\frac{a+b+c}{4}\ge\frac{\sqrt{3\left(ab+bc+ca\right)}}{4}=\frac{\sqrt{3}}{4}\)

\(P_{min}=\frac{\sqrt{3}}{4}\) khi \(a=b=c=\frac{1}{\sqrt{3}}\)

Anna Vũ
Xem chi tiết
Đạt Trần Tiến
Xem chi tiết
Lightning Farron
7 tháng 2 2018 lúc 21:29

Áp dụng BĐT Mincopxki:

\(P\ge\sqrt{\left(a+b+c\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{\left(a+b+c\right)^2}}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\dfrac{81}{16\left(a+b+c\right)^2}+\dfrac{1215}{16\left(a+b+c\right)^2}}\)

\(\ge\sqrt{2\sqrt{\left(a+b+c\right)^2\cdot\dfrac{81}{16\left(a+b+c\right)^2}}+\dfrac{1215}{16\cdot\left(\dfrac{3}{2}\right)^2}}\)

\(=\dfrac{3\sqrt{17}}{2}\)

\("="\Leftrightarrow a=b=c=\dfrac{1}{2}\)

Trần Thanh Phương
8 tháng 8 2019 lúc 16:12

Cách khác :)

Áp dụng bất đẳng thức Bunhiacopxki :

\(\left(1+16\right)\left(a^2+\frac{1}{b^2}\right)\ge\left(a+\frac{4}{b}\right)^2\)

\(\Rightarrow\sqrt{17}\cdot\sqrt{a^2+\frac{1}{b^2}}\ge a+\frac{4}{b}\)

Tương tự : \(\sqrt{17}\cdot\sqrt{b^2+\frac{1}{c^2}}\ge b+\frac{4}{c};\sqrt{17}\cdot\sqrt{c^2+\frac{1}{a^2}}\ge c+\frac{4}{a}\)

Cộng theo vế của 3 bất đẳng thức :

\(\sqrt{17}\cdot\left(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\right)\ge\left(a+b+c\right)+4\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\sqrt{17}\cdot P\ge a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)

Áp dụng bất đẳng thức Cô-si:

Xét \(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\)

\(=16a+\frac{4}{a}+16b+\frac{4}{b}+16c+\frac{4}{c}-15a-15b-15c\)

\(\ge2\sqrt{\frac{16\cdot4a}{a}}+2\sqrt{\frac{16\cdot4b}{b}}+2\sqrt{\frac{16\cdot4c}{c}}-15\left(a+b+c\right)\)

\(=16\cdot3-15\cdot\frac{3}{2}=\frac{51}{2}\)

Ta có : \(\sqrt{17}\cdot P\ge\frac{51}{2}\)

\(\Leftrightarrow P\ge\frac{3\sqrt{17}}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{2}\)

Hải Đậu Thị
Xem chi tiết
Nguyên Đinh Huynh Ronald...
23 tháng 12 2015 lúc 22:37

123

ai tích mk lên 885 mk tích lại cho 

Neet
Xem chi tiết
Trần Việt Linh
9 tháng 10 2016 lúc 12:45

Bài 1:

Có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Có: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

xong bn áp dụng lên trên lm tiếp

Trần Việt Linh
9 tháng 10 2016 lúc 12:49

Bài 3:

theo bđt cô si ta có:

\(\sqrt{\frac{b+c}{a}\cdot1}\le\left(\frac{b+c}{a}+1\right):2=\frac{b+c+a}{2a}\)

=> \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)                         (1)

Tương tự ta có :

\(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\)                            (2)

\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)                               (3)

Cộng vế vs vế (1)(2)(3) ta có:

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a+2b+2c}{a+b+c}=2\)

Trần Việt Linh
9 tháng 10 2016 lúc 12:53

Bài 2:

Ta có: 

\(\frac{\sqrt{n+1}-\sqrt{n}}{n+\left(n+1\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{2n+1}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n+1}}< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{4n^2+4n}}=\frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Nên:

\(A< \frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\right)=\frac{1}{2}\left(1-\frac{1}{5}\right)=\frac{2}{5}\)