cho a = \(\sqrt{65}\) - \(\sqrt{63}\)
cmr 1/8 < a < 2/15
Cho số \(a=\sqrt{65}-\sqrt{63}.\)
Chứng minh\(\frac{1}{8}< a< \frac{2}{15}\)
Ta có:
\(\left(\sqrt{65}+\sqrt{63}\right)^2=128+2\sqrt{65.63}< 128+2\sqrt{64.64}=\left(\sqrt{64}+\sqrt{64}\right)^2\Rightarrow\sqrt{65}+\sqrt{63}< \sqrt{64}+\sqrt{64}\)
\(\Rightarrow a=\sqrt{65}-\sqrt{63}=\frac{2}{\sqrt{65}+\sqrt{63}}>\frac{2}{\sqrt{64}+\sqrt{64}}=\frac{2}{2\sqrt{64}}=\frac{1}{8}\)
Ta có:
\(a=\frac{2}{\sqrt{65}+\sqrt{63}}< \frac{2}{\sqrt{64}+\sqrt{49}}=\frac{2}{15}\)
Vậy \(\frac{1}{8}< a< \frac{2}{15}\)
Không dùng mtct, so sánh
A) \(\sqrt{65}\)+1 và \(\sqrt{63}\)+1
B)\(\dfrac{1}{\sqrt{8}}\)và \(\dfrac{1}{\sqrt{7}}\)
C)\(\sqrt{34,9}\) và 6
D) \(3\sqrt{25,5}\) và 14
E)\(2\sqrt{26}\)+4 và 13
F) \(\sqrt{24}\)+\(\sqrt{63+3}\)và 16
G) \(\dfrac{46-3\sqrt{49}}{4}\)và \(\sqrt{50}\)
e: \(2\sqrt{26}>9\)
nên \(2\sqrt{26}+4>13\)
Cho \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
Cmr \(A\le\dfrac{2}{3}\)
Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+8\sqrt{x}-5-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\le0\)
\(\Leftrightarrow A\le\dfrac{2}{3}\)
cho a=\(\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}\).1)CMR 4a2+\(\sqrt{2}a-\sqrt{2}=0\).2)tính S=a2 + \(\sqrt{a^4+a+1}\)
So sánh :
a, \(\sqrt{8}+\sqrt{15}\) và \(\sqrt{65}-1\)
b, \(\frac{13-2\sqrt{3}}{6}\)và \(\sqrt{2}\)
a) \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)
\(\sqrt{65}-1>\sqrt{64}-1=8-1=7\)
\(\Rightarrow\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)
b) \(\frac{13-2\sqrt{3}}{6}>\frac{13-2\sqrt{4}}{6}=1,5\)
mà 1,52 = 2,25 ; \(\sqrt{2}^2=2\)
\(\Rightarrow1,5>\sqrt{2}\)hay \(\frac{13-2\sqrt{3}}{6}>\sqrt{2}\)
CHỨNG MINH
\(\sqrt{8}+\sqrt{15}=\sqrt{65-1}\)
23 tháng 7 lúc 19:57
a) Có √8+√15<√9+√16=3+4=78+15<9+16=3+4=7
√65−1>√64−1=8−1=765−1>64−1=8−1=7
=> √8+√15<√65−18+15<65−1
Giải phương trình
a, \(\sqrt{x-1+4\sqrt{x-5}}+\sqrt{11+x+8\sqrt{x-5}}=0\)
b, \(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=\sqrt{8}\)
c. \(\sqrt[3]{\left(65+x\right)^2}+4\sqrt[3]{\left(65-x\right)^2}=5\sqrt[3]{65^2-x^2}\)
d, \(\sqrt{\dfrac{x^2+x+1}{x}}+\sqrt{\dfrac{x}{x^2+x+1}}=\dfrac{7}{4}\)
b, ĐKXĐ: \(x\ge\frac{5}{2}\)
\(pt\Leftrightarrow\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)
\(\Leftrightarrow\sqrt{2x-5}=3\)
\(\Leftrightarrow x=7\left(tm\right)\)
a, ĐKXĐ: \(x\ge5\)
\(pt\Leftrightarrow\sqrt{x-5+4\sqrt{x-5}+4}+\sqrt{x-5+8\sqrt{x-5}+16}=0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-5}+2\right)^2}+\sqrt{\left(\sqrt{x-5}+4\right)^2}=0\)
\(\Leftrightarrow2\sqrt{x-5}+6=0\)
\(\Leftrightarrow\sqrt{x-5}=-3\)
Phương trình vô nghiệm
Không dùng máy tính hoặc bảng số, hãy so sánh
a, \(\sqrt{8}\) + \(\sqrt{15}\) và \(\sqrt{65}\) -1
b, \(\dfrac{13-2\sqrt{3}}{6}\) và \(\sqrt{2}\)
Lời giải:
a.
$\sqrt{8}+\sqrt{15}+1<\sqrt{9}+\sqrt{16}+1=3+4+1=8=\sqrt{64}< \sqrt{65}$
$\Rightarrow \sqrt{8}+\sqrt{15}< \sqrt{65}-1$
b.
$(2\sqrt{3}+6\sqrt{2})^2=84+24\sqrt{6}< 84+24\sqrt{9}< 169$
$\Rightarrow 2\sqrt{3}+6\sqrt{2}< 13$
$\Rightarrow \frac{13-2\sqrt{3}}{6}> \sqrt{2}$
Câu 1 : Tìm số tự nhiên n sao cho n+24 va n-65 là hai số chính phương
Câu 2 :
a, Cmr với 3 số a,b,c bất kì ta có :\(a^2+b^2+c^2\ge ab+bc+ca\)
b, Tính giá trị biểu thức : \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2}+\sqrt{3}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{2}-\sqrt{3}}\)
Tính: a
\(\sqrt{60}-\sqrt{135}+\frac{1}{3}\sqrt{15}\)
b.\(\sqrt{28}-\frac{1}{2}\sqrt{343}+2\sqrt{63}\)
c.\(\sqrt{12}-\frac{2}{3}\sqrt{27}+\sqrt{243}\)
a) \(\sqrt{60}-\sqrt{135}+\frac{1}{3}\sqrt{15}\)
\(=2\sqrt{15}-3\sqrt{15}+\frac{1}{3}\sqrt{15}\)
\(=-\frac{2}{3}\sqrt{15}\)
b) \(\sqrt{28}-\frac{1}{2}\sqrt{343}+2\sqrt{63}\)
\(=2\sqrt{7}-\frac{7}{2}\sqrt{7}+6\sqrt{7}\)
\(=\frac{9}{2}\sqrt{7}\)
c) \(\sqrt{12}-\frac{2}{3}\sqrt{27}+\sqrt{243}\)
\(=2\sqrt{3}-2\sqrt{3}+9\sqrt{3}\)
\(=9\sqrt{3}\)