Tìm x,y thuộc Z
2x+2y=xy
Đề bài : Tìm x , y thuộc Z , biết :a) xy + x + 2y = 5b) xy - 3x - y = 0c)xy +2x +2y = -16
a) \(xy+x+2y=5\\ \Rightarrow y\left(x+2\right)+x+2=5+2\\ \Rightarrow\left(x+2\right)\left(y+1\right)=7\)
Ta xét bảng:
x+2 | 1 | 7 | -1 | -7 |
x | -1 | 5 | -3 | -9 |
y+1 | 7 | 1 | -7 | -1 |
y | 6 | 0 | -8 | -2 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;6\right);\left(5;0\right);\left(-3;-8\right);\left(-9;-2\right)\right\}\)
b) \(xy-3x-y=0\\ \Rightarrow x\left(y-3\right)-y+3=3\\ \Rightarrow\left(y-3\right)\left(x-1\right)=3\)
Ta xét bảng:
x-1 | 1 | 3 | -1 | -3 |
x | 2 | 4 | 0 | -2 |
y-3 | 3 | 1 | -3 | -1 |
y | 6 | 4 | 0 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(2;6\right);\left(4;4\right);\left(0;0\right);\left(-2;2\right)\right\}\)
c) \(xy+2x+2y=-16\\ \Rightarrow x\left(y+2\right)+2y+4=-12\\ \Rightarrow\left(y+2\right)\left(x+2\right)=-12\)
Ta xét bảng:
x+2 | 1 | 2 | 3 | 4 | 6 | 12 | -1 | -2 | -3 | -4 | -6 | -12 |
x | -1 | 0 | 1 | 2 | 4 | 10 | -3 | -4 | -5 | -6 | -8 | -14 |
y+2 | -12 | -6 | -4 | -3 | -2 | -1 | 12 | 6 | 4 | 3 | 2 | 1 |
y | -14 | -8 | -6 | -5 | -4 | -3 | 10 | 4 | 2 | 1 | 0 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;-14\right);\left(0;-8\right);\left(1;-6\right);\left(2;-5\right);\left(4;-4\right);\left(10;-3\right);\left(-3;10\right);\left(-4;4\right);\left(-5;2\right);\left(-6;1\right);\left(-8;0\right);\left(-14;-1\right)\right\}\)
Tìm x,y thuộc Z,biết : a) xy+5x+y=4 b)xy+14+2y+7x=-10 c)xy+x+y=2.
`a)xy+5x+y=4`
`=>x(y+5)+y+5=9`
`=>(y+5)(x+1)=9`
Vì `x,y in ZZ`
`=>x+1,y+5 in ZZ`
`=>x+1,y+5 in Ư(9)={+-1,+-3,+-9}`
Đến đây xét giá trị rồi giải(cái này phải tự làm).
`b)xy+14+2y+7x=0`
`=>y(x+2)+7(x+2)=0`
`=>(x+2)(y+7)=0`
`=>` \(\left[ \begin{array}{l}x=-2\\y=-7\end{array} \right.\)
`c)xy+x+y=2`
`=>x(y+1)+y+1=3`
`=>(x+1)(y+1)=3`
Vì `x,y in ZZ`
`=>x+1,y+1 in ZZ`
`=>x+1,y+1 in Ư(3)={+-1,+-3}`
Đến đây xét giá trị rồi giải(cái này phải tự làm).
Giải:
a) \(xy+5x+y=4\)
\(\Rightarrow x.\left(y+5\right)+\left(y+5\right)=9\)
\(\Rightarrow\left(x+1\right).\left(y+5\right)=9\)
\(\Rightarrow\left(x+1\right)\) và \(\left(y+5\right)\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta có bảng giá trị:
x+1 | -9 | -3 | -1 | 1 | 3 | 9 |
y+5 | -1 | -3 | -9 | 9 | 3 | 1 |
x | -10 | -4 | -2 | 0 | 2 | 8 |
y | -6 | -8 | -14 | 4 | -2 | -4 |
Vậy \(\left(x;y\right)=\left\{\left(-10;-6\right);\left(-4;8\right);\left(-2;-14\right);\left(0;4\right);\left(2;-2\right);\left(8;-4\right)\right\}\)
b) \(xy+14+2y+7x=-10\)
\(\Rightarrow y.\left(x+2\right)+7x+14=-10\)
\(\Rightarrow y.\left(x+2\right)+7.\left(x+2\right)=-10\)
\(\Rightarrow\left(x+2\right).\left(y+7\right)=-10\)
\(\Rightarrow\left(x+2\right)\) và \(\left(y+7\right)\inƯ\left(-10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng giá trị:
x+2 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
y+7 | 1 | 2 | 5 | 10 | -10 | -5 | -2 | -1 |
x | -12 | -7 | -4 | -3 | -1 | 0 | 3 | 8 |
y | -6 | -5 | -2 | 3 | -17 | -12 | -9 | -8 |
Vậy \(\left(x;y\right)=\left\{\left(-12;-6\right);\left(-7;-5\right);\left(-4;-2\right);\left(-3;3\right);\left(-1;-17\right);\left(0;-12\right);\left(3;-9\right);\left(8;-8\right)\right\}\)
c) \(xy+x+y=2\)
\(\Rightarrow x.\left(y+1\right)+\left(y+1\right)=3\)
\(\Rightarrow\left(x+1\right).\left(y+1\right)=3\)
\(\Rightarrow\left(x+1\right)\) và \(\left(y+1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
x+1 | -3 | -1 | 1 | 3 |
y+1 | -1 | -3 | 3 | 1 |
x | -4 | -2 | 0 | 2 |
y | -2 | -4 | 2 | 0 |
Vậy \(\left(x;y\right)=\left\{\left(-4;-2\right);\left(-2;-4\right);\left(0;2\right);\left(2;0\right)\right\}\)
Chúc bạn học tốt!
tìm x y thuộc z
a) x+y=xy
b) 2x-xy-2y=3
c) 4x-xy+5y=17
d) 2xy+2n-y=5
a: =>x-xy+y=0
=>x(1-y)+1-y-1=0
=>(x+1)(1-y)=1
=>(x+1)(y-1)=-1
=>\(\left(x+1;y-1\right)\in\left\{\left(-1;1\right);\left(1;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;2\right);\left(0;0\right)\right\}\)
b: 2x-xy-2y=3
=>x(2-y)-2y+4=7
=>x(2-y)+2(2-y)=7
=>(x+2)(y-2)=-7
=>\(\left(x+2;y-2\right)\in\left\{\left(1;-7\right);\left(-7;1\right);\left(-1;7\right);\left(7;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(-1;-5\right);\left(-9;3\right);\left(-3;9\right);\left(5;1\right)\right\}\)
c: =>x(4-y)+5y-20=-3
=>x(4-y)-5(4-y)=-3
=>(4-y)(x-5)=-3
=>(x-5)(y-4)=3
=>\(\left(x-5;y-4\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(6;9\right);\left(8;5\right);\left(4;1\right);\left(2;3\right)\right\}\)
x+2y+xy=2 tìm x,y thuộc z
\(x+2y+xy=2\)
\(\Rightarrow x\left(1+y\right)+2y+2-2=2\)
\(\Rightarrow x\left(1+y\right)+2\left(y+1\right)=4\)
\(\Rightarrow\left(y+1\right)\left(x+2\right)=4\)
\(\Rightarrow\left(x+2\right);\left(y+1\right)\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-3;-5\right);\left(-1;3\right);\left(-4;-3\right);\left(0;1\right);\left(-6;-2\right);\left(2;0\right)\right\}\)
Tìm x, y thuộc N, biết xy + 2y - x - y = 5
tìm x,y thuộc N* thỏa mãn
x2-xy+y^2=x^2y^2 - 5
tìm x,y thuộc N* thỏa mãn
x2-xy+y^2=x^2y^2 - 5
tìm x,y thuộc N* thỏa mãn
x2-xy+y^2=x^2y^2 - 5
tìm x,y thuộc N* thỏa mãn
x2-xy+y^2=x^2y^2 - 5
tìm x,y thuộc Z , biết
xy+2y-x=5+2y2