Những câu hỏi liên quan
Ngocmai
Xem chi tiết
Bùi Minh Đức B
Xem chi tiết
Pham Quoc Cuong
9 tháng 4 2018 lúc 21:24

a, Áp dụng \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)

Áp dụng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x,y>0\)

Ta có: \(A=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(2+\frac{1}{a}+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+\frac{4}{a+b}\right)^2}{2}\ge\frac{\left(2+4\right)^2}{2}=18\)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

b, Áp dụng \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\forall x,y,z>0\)

Ta có: \(B=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2+\left(1+\frac{1}{c}\right)^2\ge\frac{\left(3+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}{3}\ge\frac{\left(3+\frac{9}{a+b+c}\right)^2}{3}\ge\frac{\left(3+6\right)^2}{3}=27\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{2}\)

* Các BĐT phụ bạn tự CM nha! Chúc bạn học tốt

Bình luận (0)
Bùi Minh Đức B
10 tháng 4 2018 lúc 21:45

Camon bạn!!! Nhưng bạn đọc sai đề r !! ^.^

Bình luận (0)
Pham Quoc Cuong
10 tháng 4 2018 lúc 21:49

Sai gì bạn?

Bình luận (0)
Khánh Anh
Xem chi tiết
pham trung thanh
31 tháng 8 2018 lúc 10:59

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
pham trung thanh
31 tháng 8 2018 lúc 11:02

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)

Bình luận (0)
tống thị quỳnh
Xem chi tiết
nguyễn kim thương
Xem chi tiết
Phan Hải Đăng
Xem chi tiết
Tran Le Khanh Linh
7 tháng 4 2020 lúc 19:33

Ta có: \(P=1+\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)+\left(\frac{1}{a^3b^3}+\frac{1}{b^3c^3}+\frac{1}{a^3c^3}+\frac{1}{a^3b^3c^3}\right)\)

\(P\ge a+\frac{3}{abc}+\frac{3}{a^2b^2c^2}+\frac{1}{a^3b^3c^3}=\left(1+\frac{1}{abc}\right)^3\) (BĐT Cosi cho 3 số dương)

Theo BĐT Cosi \(abc\le\left(\frac{a+b+c}{3}\right)^3=8̸\)\(\Rightarrow abc\le8\Rightarrow\frac{1}{abc}\ge\frac{1}{8}\)

Vậy \(P\ge\left(1+\frac{1}{8}\right)^3=\frac{729}{512}\)

Dấu "=" xảy ra khi a=b=c=2

Bình luận (0)
 Khách vãng lai đã xóa
Cô Gái Mùa Đông
Xem chi tiết
Edogawa Conan
16 tháng 10 2020 lúc 13:14

Áp dụng bđt svacxo: \(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}\ge\frac{\left(x_1+x_2\right)^2}{y_1+y_2}\) (1)

CM bđt đúng: Từ (1) <=> \(\left(\frac{x_1^2}{y_1}+\frac{x_2^2}{y_2}\right)\left(y_1+y_2\right)\ge\left(x_1+x_2\right)^2\)

<=> \(x_1^2+\frac{x_1^2.y_2}{y_1}+\frac{x_2^2.y_1}{y_2}+x_2^2\ge x_1^2+2x_1x_2+x_2^2\)

<=> \(\frac{x_1^2y_2^2-2x_1x_2y_1y_2+x_2^2y_1^2}{y_1.y_2}\ge0\)

<=> \(\frac{\left(x_1y_2-x_2y_1\right)^2}{y_1y_2}\ge0\)(luôn đúng với mọi y1; y2 > 0)

Khi đó: F = \(\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}\right)^2\ge\frac{\left(1+\frac{1}{a}+1+\frac{1}{b}\right)^2}{2}\ge\frac{\left(2+\frac{4}{a+b}\right)^2}{2}=\frac{\left(2+4\right)^2}{2}=18\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}1+\frac{1}{a}=1+\frac{1}{b}\\\frac{1}{a}=\frac{1}{b}\\a+b=1\end{cases}}\) <=> a = b = 1/2

Vậy MinF = 18 khi a = b = 1/2

Bình luận (0)
 Khách vãng lai đã xóa
Lalisa Manobal
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 5 2020 lúc 23:06

\(1=a+b\ge2\sqrt{ab}\Rightarrow ab\le\frac{1}{4}\)

\(A=a^2b^2+\frac{1}{a^2b^2}+2\)

\(A=a^2b^2+\frac{1}{256a^2b^2}+\frac{255}{256\left(ab\right)^2}+2\)

\(A\ge2\sqrt{\frac{a^2b^2}{256a^2b^2}}+\frac{255}{256.\left(\frac{1}{4}\right)^2}+2=\frac{289}{16}\)

\(A_{min}=\frac{289}{16}\) khi \(a=b=\frac{1}{2}\)

Bình luận (0)
Neet
Xem chi tiết
Akai Haruma
2 tháng 3 2017 lúc 0:34

Bài 3)

BĐT cần chứng minh tương đương với:

\(\left ( \frac{a}{a+b} \right )^2+\left ( \frac{b}{b+c} \right )^2+\left ( \frac{c}{c+a} \right )^2\geq \frac{1}{2}\left ( 3-\frac{a}{a+b}-\frac{b}{b+c}-\frac{c}{c+a} \right )\)

Để cho gọn, đặt \((x,y,z)=\left (\frac{b}{a},\frac{c}{b},\frac{a}{c}\right)\) \(\Rightarrow xyz=1\).

BĐT được viết lại như sau:

\(A=2\left [ \frac{1}{(x+1)^2}+\frac{1}{(y+1)^2}+\frac{1}{(z+1)^2} \right ]+\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq 3\) \((\star)\)

Ta nhớ đến hai bổ đề khá quen thuộc sau:

Bổ đề 1: Với \(a,b>0\) thì \(\frac{1}{(a+1)^2}+\frac{1}{(b+1)^2}\geq \frac{1}{ab+1}\)

Cách CM rất đơn giản, Cauchy - Schwarz:

\((a+1)^2\leq (a+b)(a+\frac{1}{b})\Rightarrow \frac{1}{(a+1)^2}\geq \frac{b}{(a+b)(ab+1)}\)

Tương tự với biểu thức còn lại và cộng vào thu được đpcm

Bổ đề 2: Với \(x,y>0,xy\geq 1\) thì \(\frac{1}{x^2+1}+\frac{1}{y^2+1}\geq \frac{2}{xy+1}\)

Cách CM: Quy đồng ta có đpcm.

Do tính hoán vị nên không mất tổng quát giả sử \(z=\min (x,y,z)\)

\(\Rightarrow xy\geq 1\). Áp dụng hai bổ đề trên:

\(A\geq 2\left [ \frac{1}{xy+1}+\frac{1}{(z+1)^2} \right ]+\frac{2}{\sqrt{xy}+1}+\frac{1}{z+1}=2\left [ \frac{z}{z+1}+\frac{1}{(z+1)^2} \right ]+\frac{2\sqrt{z}}{\sqrt{z}+1}+\frac{1}{z+1}\)

\(\Leftrightarrow A\geq \frac{2(z^2+z+1)}{(z+1)^2}+\frac{1}{z+1}+2-\frac{2}{\sqrt{z}+1}\geq 3\)

\(\Leftrightarrow 2\left [ \frac{z^2+z+1}{(z+1)^2}-\frac{3}{4} \right ]+\frac{1}{z+1}-\frac{1}{2}-\left ( \frac{2}{\sqrt{z}+1}-1 \right )\geq 0\)

\(\Leftrightarrow \frac{(z-1)^2}{2(z+1)^2}-\frac{z-1}{2(z+1)}+\frac{z-1}{(\sqrt{z}+1)^2}\geq 0\Leftrightarrow (z-1)\left [ \frac{1}{(\sqrt{z}+1)^2}-\frac{1}{(z+1)^2} \right ]\geq 0\)

\(\Leftrightarrow \frac{\sqrt{z}(\sqrt{z}-1)^2(\sqrt{z}+1)(z+\sqrt{z}+2)}{(\sqrt{z}+1)^2(z+1)^2}\geq 0\) ( luôn đúng với mọi \(z>0\) )

Do đó \((\star)\) được cm. Bài toán hoàn tất.

Dấu bằng xảy ra khi \(a=b=c\)

P/s: Nghỉ tuyển lâu rồi giờ mới gặp mấy bài BĐT phải động não. Khuya rồi nên xin phép làm bài 3 trước. Hai bài kia xin khiếu. Nếu làm đc chắc tối mai sẽ post.

Bình luận (1)
Lightning Farron
2 tháng 3 2017 lúc 18:11

Bài 1:

Cho \(a=b=c=\dfrac{1}{\sqrt{3}}\). Khi đó \(M=\sqrt{3}-2\)

Ta sẽ chứng minh nó là giá trị nhỏ nhất

Thật vậy, đặt c là giá trị nhỏ nhất của a,b,c. Khi đó, ta cần chứng minh

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\frac{2(a^2+b^2+c^2)}{\sqrt{ab+ac+bc}}\geq(\sqrt3-2)\sqrt{ab+ac+bc}\)

\(\Leftrightarrow\sqrt{ab+ac+bc}\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-\sqrt{3(ab+ac+bc)}\right)\geq2(a^2+b^2+c^2-ab-ac-bc)\)

\(\Leftrightarrow\frac{a^2}{b}+\frac{b^2}{a}-a-b+\frac{b^2}{c}+\frac{c^2}{a}-\frac{b^2}{a}-c+a+b+c-\sqrt{3(ab+ac+bc)}\geq\)

\(\geq2((a-b)^2+(c-a)(c-b))\)

\(\Leftrightarrow(a-b)^2\left(\frac{1}{a}+\frac{1}{b}-2\right)+(c-a)(c-b)\left(\frac{1}{a}+\frac{b}{ac}-2\right)+a+b+c-\sqrt{3(ab+ac+bc)}\geq0\)

Đúng bởi \(\frac{1}{a}+\frac{1}{b}-2>0;\frac{1}{a}+\frac{b}{ac}-2\geq\frac{1}{a}+\frac{1}{a}-2>0\)

\(a+b+c-\sqrt{3(ab+ac+bc)}=\frac{(a-b)^2+(c-a)(c-b)}{a+b+c+\sqrt{3(ab+ac+bc)}}\geq0\)

BĐT đã được c/m. Vậy \(M_{Min}=\sqrt{3}-2\Leftrightarrow a=b=c=\dfrac{1}{\sqrt{3}}\)

P/s: Nhìn qua thấy ngon mà làm mới thấy thật sự là "choáng"

Bình luận (3)
Hung nguyen
2 tháng 3 2017 lúc 10:57

Câu 1/ Ta có

\(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow1\le\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow\left(a+b+c\right)^2\ge3\)

\(\Leftrightarrow\sqrt{3}\le a+b+c< 3\)

Ta có: \(M=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)

\(=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-2\left(a^2+b^2+c^2\right)\)

\(\ge\frac{\left(a+b+c\right)^2}{a+b+c}-2\left(a^2+b^2+c^2\right)-4\left(ab+bc+ca\right)+4\left(ab+bc+ca\right)\)

\(=a+b+c-2\left(a+b+c\right)^2+4\) (1)

Đặt \(a+b+c=x\left(\sqrt{3}\le x< 3\right)\)

Ta tìm GTNN của hàm số: \(y=-2x^2+x+4\)

\(\Rightarrow y'=-4x+1=0\)

\(\Rightarrow x=\frac{1}{4}=0,25\)

Thế x lần lược các giá trị \(\left\{\begin{matrix}x=0,25\\x=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left\{\begin{matrix}y=4,125\\y=-2+\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow y_{min}=-2+\sqrt{3}\) đạt cực trị tại \(x=\sqrt{3}\) (2)

Từ (1) và (2) ta suy ra GTNN của M là \(-2+\sqrt{3}\) tại \(a=b=c=\frac{1}{\sqrt{3}}\)

Bình luận (7)