Giải bất pt sau : x-3/x-7 ≤ 0
giải pt và bất pt sau:
a.5|2x-1|-3=7
b.(2x+3)(x-2)-x^2+4=0
c. 2x-3/2<1-3x/-5
a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)
TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)
TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)
\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)
1, Giải bất pt sau:
\(-2x+\frac{3}{5}\le\frac{3\left(2x-7\right)}{3}\)
2, Xác định m để hệ bất pt sau có nghiệm:
a, \(\left\{\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\)
b, \(\left\{\begin{matrix}x-1>0\\mx-3>0\end{matrix}\right.\)
Bai1:
\(-2x+\frac{3}{5}\le\frac{3\left(2x-7\right)}{3}\Leftrightarrow-10x+3\le5\left(2x-7\right)\Leftrightarrow-10x+3\le10x-35\)
\(\Leftrightarrow\left(10+10\right)x\ge3+35\Rightarrow x\ge\frac{38}{20}=\frac{19}{10}\)
Bài
\(\left\{\begin{matrix}x+m-1>0\\3m-2-x>0\end{matrix}\right.\Leftrightarrow\left(I\right)\left\{\begin{matrix}x>1-m\\x< 3m-2\end{matrix}\right.\)
Hệ (I) có nghiệm cần m thỏa mãn:
\(1-m< 3m-2\Leftrightarrow1+2< 3m+m\Rightarrow m>\frac{3}{2}\)
Kết luận: để hệ có nghiệm cần: m>3/2
Giải hệ bất pt sau :
\(\left\{{}\begin{matrix}4-3x-x^2\ge0\\x^2+x-2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-4\le x\le1\\\left[{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-4\le x< -2\)
Giải bất pt sau
\(\left(x-1\right)\left(3x^2+9x-12\right)< 0\)
giải bất pt: \(3\sqrt{x}+\dfrac{3}{2\sqrt{x}}< 2x+\dfrac{1}{2x}-7\)
ĐKXĐ: \(x>0\)
\(3\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< 2\left(x+\dfrac{1}{4x}+1\right)-9\)
\(\Leftrightarrow3\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)< 2\left(\sqrt{x}+\dfrac{1}{2\sqrt{x}}\right)^2-9\)
Đặt \(\sqrt{x}+\dfrac{1}{2\sqrt{x}}=a>0\)
\(\Rightarrow3a< 2a^2-9\Rightarrow2a^2-3a-9>0\)
\(\Rightarrow\left(a-3\right)\left(2a+3\right)>0\)
\(\Rightarrow a-3>0\Rightarrow a>3\)
\(\Rightarrow\sqrt{x}+\dfrac{1}{2\sqrt{x}}>3\Leftrightarrow2x+1>6\sqrt{x}\)
\(\Leftrightarrow2x-6\sqrt{x}+1>0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}>\dfrac{3+\sqrt{7}}{2}\\0\le\sqrt{x}< \dfrac{3-\sqrt{7}}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x>\dfrac{8+3\sqrt{7}}{2}\\0\le x< \dfrac{8-3\sqrt{7}}{2}\end{matrix}\right.\)
Giải bất pt sau:
a, x^2 - 5x + 6 nhỏ hơn hoặc bằng 0
\(x^2-5x+6\le0\)
\(\Leftrightarrow x^2-2x-3x+6\le0\)
\(\Leftrightarrow x.\left(x-2\right)-3.\left(x-2\right)\le0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)\le0\)
\(\text{Mà }x-2>x-3\text{ nên :}\)
\(x-2\ge0\text{ và }x-3\le0\)
\(\Leftrightarrow x\ge2\text{ và }x\le3\Rightarrow2\le x\le3\)
giải cá bất pt sau :
a, 3*(x-5)*(x+5)<x*(3x-2)+7
b,5/3-(2x-2/4)>=x-(4x-3/6)
c,(2x-1/3)>(4x+3/5)
\(\frac{5}{3}-\left(2x-\frac{2}{4}\right)\ge x-\left(4x-\frac{3}{6}\right)\)
\(\Leftrightarrow\frac{5}{3}-2x+\frac{1}{2}\ge x-4x+\frac{1}{2}\)
\(\Leftrightarrow x\ge-\frac{5}{3}\)
Ý c cx vậy nha ! Chuyển vế rồi thu gọn lại
(5-x)(x-1)(2+3x) ≤ 0
giải bất pt
(5-x)(x-1)(2+3x) ≤ 0
↔ 5-x≤0 <=> x≥5 (1)
x-1 ≤ 0<=> x≤ 1 (2)
2+3x ≤ 0 <=> x≤ -2/3 (3)
Từ (1),(2),(3) ta có:
x≥5 or x≤1 or x≤ -2/3
chúc bạn học tốt !!!
Xét \(5-x=0\Leftrightarrow x=5\)
\(x-1=0\Leftrightarrow x=1\)
\(2+3x=0\Leftrightarrow x=-\dfrac{2}{3}\)
Bảng xét dấu:
Để VT\(\le\)0 <=>\(\left[{}\begin{matrix}-\dfrac{2}{3}\le x\le1\\x\ge5\end{matrix}\right.\)
Vậy...
Giải PT sau áp dụng bất đẳng thức
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}-3\sqrt{3}x=6\sqrt{3}\)
1) Giải các phương trình sau : a) x-3/x=2-x-3/x+3 b) 3x^2-2x-16=0 2) Giải bất phương trình sau: 4x-3/4>3x-5/3-2x-7/12
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)